
1

Montgomery Exponentiation Needs No Final Subtractions

Colin D. Walter

Computation Department, UMIST

PO Box 88, Sackville Street, Manchester M60 1QD, UK

www.co.umist.ac.uk

Abstract

 Montgomery’s modular multiplication algorithm is commonly used in implementations of

the RSA cryptosystem. We observe that there is no need for extra cleaning up at the end of an

exponentiation if the method is set up in the right way.

Key Words: Cryptography, RSA cryptosystem, Montgomery modular multiplication.

1 Introduction

 The RSA encryption function [6] uses a public modulus M, usually of up to 1024 bits, and

two keys d and e, at least one of which is private, with the property that A
de

 ≡ A mod M.

Message blocks A satisfying 0 ≤ A < M are encrypted to C = A
e
 mod M and decrypted by A =

C
d
 mod M. The computation of A

e
 mod M consists of two main processes: modular

multiplication and exponentiation. The constituent modular reduction steps on partial results

S normally require a comparison of S with M which, in the worst case, means that every bit of

both long numbers needs to be examined in turn. Such potentially expensive comparisons

need to be done even if no subtraction is actually required. This letter will show that use of

Montgomery’s modular multiplication algorithm [5] enables every such comparison to be

avoided. It develops further a remark by Blum and Paar [1]. The methods are applicable to

all implementations, whether in software or hardware. As well as saving computation time,

avoiding such comparisons is important in preventing the success of timing attacks on the

cryptosystem [4].

IEE Electronics Letters, vol. 35 no. 21, October 1999, pp 1831-1832

2

2 Montgomery’s Algorithm

 Suppose all numbers are represented with base (or radix) r which is a power of 2, say r =

2
k
, and let n be an upper bound on the number of digits needed for any number encountered.

Then every number X has a representation of the form X = x ri
i

i

n

=

−

∑ 0

1
 where, for non-

redundant systems, the ith digit xi satisfies 0 ≤ xi < r. The classical modular multiplication

algorithm for (A×B) mod M simply takes the normal method of multiplication, which

accumulates digit products ai×B, and interleaves modular reductions to keep the result below

M. Peter Montgomery [5] has provided a variation of this algorithm in which the multiplier

digits are consumed in the reverse order and no full length comparisons are required for the

modular reductions:

MONTGOMERY’S MODULAR MULTIPLICATION ALGORITHM

{ Pre-condition: M prime to r and A non-redundant}

S := 0 ;

For i := 0 to n−1 do

Begin

 qi := (s0+aib0)(-m0
-1
) mod r ;

 S := (S + ai×B + qi×M) div r ;

 { Invariant: 0 ≤ S < M+B }
End ;

{ Post-condition: Sr
n
 = A×B + Q×M }

In RSA the modulus is a product of two large primes and so prime to the radix r. Hence there

is a residue m0
−1

 mod r which satisfies m0×m0
−1

 ≡ 1 mod r. The digit qi is chosen so that

S+ai×B+qi×M is exactly divisible by r. If we define Ai = a rj

j

j

i

=
∑ 0

and Qi analogously then

Ai = Ai−1+air
i
 and An = A. By induction, the value of S at the end of the ith iteration is easily

shown to satisfy r
i+1

S = Ai×B+Qi×M because the division is exact. Hence the post-condition

holds. Moreover, the bound on the size of the digits ai enables the loop invariant to be

established also by induction.

 Some implementations may make use of redundant representations in which the digits

have a wider range than 0 .. r−1. However, because the digits of A are consumed in

ascending order, they can be converted on-line into the standard representation for A. Thus

the algorithm can treat any redundancy in A. Redundancy in the other numbers is immaterial

to the present argument.

 C. D. Walter, Montgomery Exponentiation Needs No Final Subtractions

3

3 Exponentiation

 In an encryption, the extra power of r factor in the output S is easily cleared up by minor

processing before and after the exponentiation [2], [3]. We associate with every number its

Montgomery class mod M, namely

 A ≡ r
n
A mod M

Then, if × denotes Montgomery modular multiplication, the Montgomery product of A and

B is A × B ≡ A B r
−n

 ≡ ABr
n
 ≡ AB mod M. Hence, using × rather than × in an

exponentiation algorithm is going to produce A
e from A . The initial class A is normally

formed as a Montgomery product from A and the pre-computed value

R = r
n ≡ r

2n
 mod M

by computing

 A × R ≡ Ar
n
 ≡ A mod M.

Finally, removal of the extra power of r from A
e is also done by a Montgomery

multiplication: A
e
 mod M is obtained from

A
e

× 1 ≡ A
e
 mod M.

4 Bounds on the I/O

 Throughout the exponentiation, outputs from multiplications are re-used as inputs. So it

is important to ensure these numbers remain bounded. In particular, we will show S < 2M is

maintainable for all outputs S. Assume that n is large enough for 2M < r
n−1

 to hold and that

the inputs A, B to a Montgomery multiplication both satisfy the bound, i.e. A < 2M and B <

2M. Then an−1 = 0. Hence, the bound S < M+B at the end of the second last loop iteration

yields S < M+r
−1

B on the final round, from which S < 2M (as r ≥ 2). Therefore, as both R and

the initial message A for encryption should be below the bound 2M, the final output of the

exponentiation should also satisfy this bound.

 Now consider the final scaling by 1 to remove the unwanted power of r from A
e . The

post-condition of this modular multiplication is Sr
n
 = A

e + QM. Here Q can have a

IEE Electronics Letters, vol. 35 no. 21, October 1999, pp 1831-1832

4

maximum value of r
n
−1 arising from all its digits being r−1. So the bound A

e < 2M leads to

Sr
n
 < (r

n
+1)M and thence to S ≤ M because S is an integer and r

−n
M < 1. Hence a final

subtraction to obtain an output S < M is only necessary if S = M, i.e. when A
e

≡ 0 mod M, that

is, for A ≡ 0 mod M. However, A is a plaintext or ciphertext message and hence, by

definition, less than M. The only possibility is then that A = 0. But A = 0 clearly leads to all

numbers being identically 0 throughout the exponentiation. In particular, the final output is 0

and does not require any extra subtraction. Thus, in no circumstances does the output A
e
 from

the exponentiation need any further modular adjustment to obtain a least non-negative residue

mod M.

4 Conclusion

 We have considered implementations of the RSA cryptosystem which use solely

Montgomery’s modular multiplication algorithm and shown that under standard, easily met,

inexpensive conditions, the total encryption process never needs any extra subtractions to

produce output in the correct range.

References

[1] T. Blum & C. Paar, “Montgomery Modular Exponentiation on Reconfigurable

Hardware”, Proc. 14th IEEE Symp. on Computer Arithmetic, Adelaide, 14-16 April,

1999, pp. 70-77.

[2] S. E. Eldridge, “A Faster Modular Multiplication Algorithm”, Intern. J. Computer

Math., vol. 40, 1991, pp. 63-68.

[3] S. E. Eldridge & C. D. Walter, “Hardware Implementation of Montgomery’s Modular

Multiplication Algorithm”, IEEE Trans. Comp., vol. 42, 1993, pp. 693-699.

[4] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems”, Advances in Cryptology, Proc Crypto 96, Lecture Notes in Computer

Science, vol. 1109, N. Koblitz editor, Springer-Verlag, 1996, pp 104-113.

[5] P. L. Montgomery, “Modular Multiplication without Trial Division”, Math.

Computation, vol. 44, 1985, pp. 519-521.

[6] R. L. Rivest, A. Shamir & L. Adleman, “A Method for obtaining Digital Signatures and

Public-Key Cryptosystems”, Comm. ACM, vol. 21, 1978, pp. 120-126.

