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Abstract 
 

 Montgomery’s modular multiplication algorithm is commonly used in implementations of 

the RSA cryptosystem.  We observe that there is no need for extra cleaning up at the end of an 

exponentiation if the method is set up in the right way.  
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1 Introduction 

 The RSA encryption function [6] uses a public modulus M, usually of up to 1024 bits, and 

two keys d and e, at least one of which is private, with the property that A
de

 ≡ A mod M.  

Message blocks A satisfying 0 ≤ A < M are encrypted to C = A
e
 mod M and decrypted by A = 

C
d
 mod M.  The computation of A

e
 mod M consists of two main processes: modular 

multiplication and exponentiation.  The constituent modular reduction steps on partial results 

S normally require a comparison of S with M which, in the worst case, means that every bit of 

both long numbers needs to be examined in turn.  Such potentially expensive comparisons 

need to be done even if no subtraction is actually required.  This letter will show that use of 

Montgomery’s modular multiplication algorithm [5] enables every such comparison to be 

avoided.  It develops further a remark by Blum and Paar [1].  The methods are applicable to 

all implementations, whether in software or hardware.  As well as saving computation time, 

avoiding such comparisons is important in preventing the success of timing attacks on the 

cryptosystem [4]. 
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2 Montgomery’s Algorithm 

 Suppose all numbers are represented with base (or radix) r which is a power of 2, say r = 

2
k
, and let n be an upper bound on the number of digits needed for any number encountered.  

Then every number X has a representation of the form X = x ri
i

i

n

=

−

∑ 0

1
 where, for non-

redundant systems, the ith digit xi satisfies 0 ≤ xi < r.  The classical modular multiplication 

algorithm for (A×B) mod M simply takes the normal method of multiplication, which 

accumulates digit products ai×B, and interleaves modular reductions to keep the result below 

M.  Peter Montgomery [5] has provided a variation of this algorithm in which the multiplier 

digits are consumed in the reverse order and no full length comparisons are required for the 

modular reductions:  

MONTGOMERY’S MODULAR MULTIPLICATION ALGORITHM 

{ Pre-condition: M prime to r and A non-redundant} 

S := 0 ; 

For i := 0 to n−1 do 

Begin 

 qi := (s0+aib0)(-m0
-1
) mod r ; 

 S := (S + ai×B + qi×M) div r ; 

 { Invariant:  0 ≤ S < M+B } 
End ; 

{ Post-condition: Sr
n
 = A×B + Q×M } 

In RSA the modulus is a product of two large primes and so prime to the radix r.  Hence there 

is a residue m0
−1

 mod r which satisfies m0×m0
−1

 ≡ 1 mod r.  The digit qi is chosen so that 

S+ai×B+qi×M is exactly divisible by r.  If we define Ai = a rj

j

j

i

=
∑ 0

and Qi analogously then 

Ai = Ai−1+air
i
 and An = A.  By induction, the value of S at the end of the ith iteration is easily 

shown to satisfy r
i+1

S = Ai×B+Qi×M because the division is exact.  Hence the post-condition 

holds.  Moreover, the bound on the size of the digits ai enables the loop invariant to be 

established also by induction. 

 Some implementations may make use of redundant representations in which the digits 

have a wider range than 0 .. r−1.  However, because the digits of A are consumed in 

ascending order, they can be converted on-line into the standard representation for A.  Thus 

the algorithm can treat any redundancy in A.  Redundancy in the other numbers is immaterial 

to the present argument. 
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3 Exponentiation 

 In an encryption, the extra power of r factor in the output S is easily cleared up by minor 

processing before and after the exponentiation [2], [3].  We associate with every number its 

Montgomery class mod M, namely 

 A   ≡   r
n
A mod M 

Then, if ×  denotes Montgomery modular multiplication, the Montgomery product of A  and 

B  is A × B  ≡ A B r
−n

 ≡ ABr
n
 ≡ AB mod M.  Hence, using ×  rather than × in an 

exponentiation algorithm is going to produce A
e  from A .  The initial class A  is normally 

formed as a Montgomery product from A and the pre-computed value  

R = r
n  ≡ r

2n
 mod M  

by computing 

 A × R  ≡  Ar
n
  ≡ A  mod M.   

Finally, removal of the extra power of r from A
e  is also done by a Montgomery 

multiplication: A
e
 mod M is obtained from  

A
e

× 1 ≡ A
e
 mod M. 

4 Bounds on the I/O 

 Throughout the exponentiation, outputs from multiplications are re-used as inputs.  So it 

is important to ensure these numbers remain bounded.  In particular, we will show S < 2M is 

maintainable for all outputs S.  Assume that n is large enough for 2M < r
n−1

 to hold and that 

the inputs A, B to a Montgomery multiplication both satisfy the bound, i.e. A < 2M and B < 

2M.  Then an−1 = 0.  Hence, the bound S < M+B at the end of the second last loop iteration 

yields S < M+r
−1

B on the final round, from which S < 2M (as r ≥ 2).  Therefore, as both R and 

the initial message A for encryption should be below the bound 2M, the final output of the 

exponentiation should also satisfy this bound. 

 Now consider the final scaling by 1 to remove the unwanted power of r from A
e .  The 

post-condition of this modular multiplication is Sr
n
 = A

e + QM.  Here Q can have a 
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maximum value of r
n
−1 arising from all its digits being r−1.  So the bound A

e < 2M leads to 

Sr
n
 < (r

n
+1)M and thence to S ≤ M because S is an integer and r

−n
M < 1.  Hence a final 

subtraction to obtain an output S < M is only necessary if S = M, i.e. when A
e

≡ 0 mod M, that 

is, for A ≡ 0 mod M.  However, A is a plaintext or ciphertext message and hence, by 

definition, less than M.  The only possibility is then that A = 0.  But A = 0 clearly leads to all 

numbers being identically 0 throughout the exponentiation.  In particular, the final output is 0 

and does not require any extra subtraction.  Thus, in no circumstances does the output A
e
 from 

the exponentiation need any further modular adjustment to obtain a least non-negative residue 

mod M. 

4 Conclusion 

 We have considered implementations of the RSA cryptosystem which use solely 

Montgomery’s modular multiplication algorithm and shown that under standard, easily met, 

inexpensive conditions, the total encryption process never needs any extra subtractions to 

produce output in the correct range. 
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