
Precise Bounds for
Montgomery Modular Multiplication

and
Some Potentially Insecure RSA Moduli

Colin D. Walter?

Comodo Research Laboratory
10 Hey Street, Bradford, BD7 1DQ, UK

www.comodo.net

Abstract. An optimal upper bound for the number of iterations and
precise bounds for the output are established for the version of Mont-
gomery Modular Multiplication from which conditional statements have
been eliminated. The removal of such statements is done to avoid timing
attacks on embedded cryptosystems but it can mean greater execution
time. Unfortunately, this inefficiency is close to its maximal for standard
RSA key lengths such as 512 or 1024 bits. Certain such keys are then
potentially subject to attack using differential power analysis. These keys
are identified, but they are rare and the danger is minimal. The improved
bounds, however, lead to consequent savings in hardware.

Key words: Cryptography, RSA cryptosystem, Montgomery modular
multiplication, differential power analysis, DPA.

1 Introduction

Modular multiplication forms the basis of RSA encryption [11], El-Gamal en-
cryption [5], and Diffie-Hellman key exchange [2] as well as many other crypto-
graphic functions. One algorithm which is particularly efficient for such multi-
plication is that of Peter Montgomery [9]. Since the algorithm makes modular
adjustments unrelated to the magnitude of the accumulating partial product,
precise bounds on its output are of interest in order to determine how much
space is required for operands and also how many iterations of its main loop
need to be performed.

If M is the modulus in question, it is easy to show that the main loop of
Montgomery’s algorithm will generate an output less than 2M if the inputs sat-
isfy that same condition and enough iterations are done [3]. Thus exponentiation

? Work done while the author was in the Computation Department at UMIST, Manch-
ester, UK.

C. D. Walter, Montgomery Modular Multiplication 31

can be performed more simply by omitting the final conditional subtraction of
M from each multiplication until the last one. However, with standard choices of
RSA key length, such as 512 or 1024 bits, 2M usually exceeds the word length by
just 1 bit. Hence, for efficiency reasons, the conditional subtractions are usually
included.

But, recent studies of embedded cryptographic systems have revealed the
importance of eliminating conditional statements from code because they may
enable timing attacks to be mounted [7]. For example, the conditional subtrac-
tion of M occurs with different probability during an exponentiation depending
on whether the operation being performed is a square or a multiplication [13].
This can lead to the recovery of the secret key. So, in [12] it was shown that
all conditional statements, even the very last one, can be removed from expo-
nentiation code using Montgomery modular multiplication if sufficiently many
iterations are performed. Hachez and Quisquater [6] subsequently showed that
the sufficient conditions given in [12] can lead to an excessive number of itera-
tions. In fact, the problem only arises close to word boundaries.

The main purpose of this paper is to improve further on the efficiency issues
which arise from [6] and [12]. Specifically, we establish the precise conditions for
avoiding unnecessary iterations, and for selecting optimal hardware for certain
common modulus lengths. Unfortunately, inefficiency turns out to be close to its
maximum for standard RSA key lengths such as 512 or 1024 bits. For such key
lengths the normal 2M bound yields a topmost “overflow” digit of either 0 or 1.
Because of the different power used during multiplication by zero and non-zero
words, this could lead to an attack on the cryptosystem using differential power
analysis (DPA) [8], [14]. A secondary aim of this paper is therefore to identify
the moduli for which this is a risk and assess the danger. The very fortunate
conclusion is that almost all standard keys are safe from this form of DPA attack,
and for those which are vulnerable the risk is extremely small. As a by-product,
we show that hardware savings are possible for all standard RSA moduli by
ensuring that the output has the same number of digits as the modulus.

2 Montgomery Modular Multiplication (MMM)

For the notation, suppose the crypto-system is supported by a multiplier that
performs k-bit × k-bit multiplications. Let r = 2k. The i+1st digit of A in base
r will be written A[i] and so the value of A is A =

∑n−1
i=0 A[i]ri if it has n digits.

Then the appropriate form of the MMM algorithm is as below. It excludes the
usual final conditional statement:

If P >= M then P <- P-M

which would be applied when the inputs A and B are less than M .

32 LNCS Vol. 2271, c©Springer-Verlag, 2002, pp. 30–39

Montgomery’s Modular Multiplication Algorithm (MMM)

{ Pre-conditions: A has n digits base r, each in the range 0 to r−1,
and M is prime to r. }

P <- 0 ;

For i <- 0 to n-1 do

Begin

q <- (-M-1(P+A[i]B)) mod r ;

P <- (P + A[i]B + qM) div r ;

{ Invariant: 0 ≤ P < M +B }
End

{ Post-conditions: Prn ≡ A×B mod M , ABr−n ≤ P < M+ABr−n}

Here M−1 denotes the multiplicative inverse modulo r. The computation of
q is done with the multiplier using the lowest digits of M , P and B, and provides
a result in the range 0 to r−1. The choice ensures exact divisibility by r in the
second line of the loop. So the MMM procedure computes A×B mod M with
some shift, which is readily seen to be rn because there are n iterations. Clearly
P < M+B is a loop invariant because it holds initially and, assuming it holds
at the end of one iteration, it must hold at the end of the next iteration because

(P+A[i]B+qM) div r < ((M+B) + (r−1)B + (r−1)M)/r = M +B

In particular, it must also hold on termination.
To achieve an output bound of 2M when A and B are bounded above by

2M , it may be necessary to perform extra iterations, i.e. to increase n. Thus, if n
is big enough that A[n−1] ≤ (r−2)/2 then, with working as above, the bound on
the final output becomes M+B/2, which is at most 2M . But, for standard RSA
key lengths, many of the inputs A can be expected to have the same number
of bits as M , and hence the top non-zero digit of A is often likely to equal or
exceed r/2. It therefore seems that an additional iteration with a zero digit of
A is necessary to achieve the usual output bound of 2M .

However, a more precise output bound is claimed in the above code for MMM.
Thus, let αi =

∑i−1
j=0A[j]rj−i. Then, by induction, αi+1 = (αi+A[i])/r < 1 for

all i. We will now prove that the loop invariant

αi+1B ≤ P < M+αi+1B

holds at the end of the iteration involving A[i]. Let Pi+1 denote the value of P
at this point and let qi be the value of q set during the iteration. Prior to the
loop commencement, the property α0B = 0 = P0 < M = M+α0B holds. This
starts the proof by induction. For the inductive step,

αi+1B = (αiB +A[i]B)/r
≤ (Pi +A[i]B + qiM)/r
= (Pi +A[i]B + qiM) div r
= Pi+1

C. D. Walter, Montgomery Modular Multiplication 33

and
Pi+1 = (Pi +A[i]B + qiM) div r

= (Pi +A[i]B + qiM)/r
< ((M+αiB) +A[i]B + (r−1)M)/r
= M + αi+1B

At the end of the last iteration, αn = Ar−n, and so the loop invariant provides:

Theorem 1. ABr−n ≤ P < M+ABr−n is a post-condition of MMM.

An alternative derivation of this can be obtained via the partial quotient
formed from the successive values of the digit q. Using the same notation, define
γi =

∑i−1
j=0 qjr

j−i. Then it is easy to see that the invariant

Pi = αi×B + γi×M

holds at the start of the loop iteration [4]. As in the case of αi, γi satisfies
0 ≤ γi < 1 for all i. Therefore taking i = n for the invariant at the end of the
final iteration yields Theorem 11.

The theorem improves on 0 ≤ P < M+B because Ar−n < 1, and it is
substantially better if A has zero or non-maximal top digits. It is also the best
possible bound in the sense that it places the output in an interval of length
M , which is the smallest interval containing a member of each residue class.
Indeed, it determines the output P uniquely up to its residue class. Without
some knowledge of the residue class of AB and hence of the digits q, this could
not be improved.

Notice that the digits of A are processed from least to most significant. So, if
it is initially in redundant form, A can be converted on-line to the non-redundant
form required. Also, we could represent B and M with radix 2l rather than 2k

and use a k×l-bit multiplier for computing the new value for P . Then the bits
of B and M are consumed l bits at a time, propagating carries, and yielding a
non-redundant output. Usually dedicated hardware does either that or uses 2k
full length digit-parallel additions to compute P in a single clock cycle giving a
redundant output.

3 Stability

In the context of exponentiation, the output needs to satisfy the same upper
bounds as are required for the inputs so that it can be fed straight back in as
another input. Under such conditions, the output will remain bounded. Let this
bound be (1+λ)M . Then P < M+ABr−n ≤ (1+λ)M delivers the requirement
for stability, namely M + (1+λ)2M2r−n ≤ (1+λ)M , i.e.

(1+λ)2Mr−n ≤ λ (1)

1 Incidentally, if Mi is chosen such that MiM ≡ 1 mod ri then γir
i =

((−αir
i)×B×Mi) mod ri.

34 LNCS Vol. 2271, c©Springer-Verlag, 2002, pp. 30–39

Solving for λ we obtain

2−1rn(1−
√

1−4Mr−n) ≤ (1+λ)M ≤ 2−1rn(1+
√

1−4Mr−n) (2)

In particular, this needs to have real roots, i.e. 4M ≤ rn. But this suffices for
the existence of a suitable λ and so for the stability of its use in exponentiation.
Hence

Theorem 2. MMM preserves an input bound (1+λ)M at output whenever 4M
< rn and λ satisfies (1).

This theorem therefore determines the minimal number of iterations n which
MMM must perform in order to obtain a stable exponentiation process, namely
the least value of n which satisfies the given inequality. Thus, assuming an initial
input less than M ,

– Exponentiation using MMM will converge if MMM consumes at least two
more bits of A than there are bits in M .

Now it is clear that if the top of M is not close to a word boundary (i.e. at least
2 bits away from the next one) then the extra iteration with a zero digit of A,
which was applied in [12], is unnecessary. Specifically, the condition used there
was 2M < rn−1. That condition was improved in [6] to M < rn−1 when r ≥ 4.
The new bound represents an improvement on both: on [12] when r > 2, and on
[6] when r > 4.

Typically r = 28, 216 or 232. In the last case, with a standard 512-bit RSA
modulus, 17 iterations are performed on 17 digit numbers, whereas with a 510-
bit modulus only 16 iterations would be performed on 16-digit numbers. In both
cases, the intermediate calculations actually involve 17 digit numbers, but one
might still question whether the extra 2 bits in the modulus to achieve a standard
key length are worth the probable extra 61

4% (= 17/16−1) processing time. The
most efficient cases of MMM occur when the key length has two fewer bits than
a multiple of the word or digit size because an extra iteration is not required.

A standard RSA configuration has a modulus which satisfies 1
2r

n−1 < M <
rn−1. Prior to concerns about DPA, MMM for this case would have been term-
inated after n−1 iterations and, if the output had P [n−1] 6= 0, a subtraction
of M would be performed. Consequently, inputs bounded above by rn−1 would
generate outputs also bounded above by rn−1 because of the loop invariant
P < M+B. We will show that, although the extra iteration is still necessary
in order to remove the conditional subtraction and the extra digit is needed for
intermediate calculations, at least the extra digit can be avoided in the output.

4 Partial Product Bounds

The extreme values for the I/O bound (1+λ)M may be of interest i) for designing
hardware and ii) for determining allowable input for the multiplier. Assume M
satisfies the inequality of Theorem 2. It is readily verified from (1) that λ = 1 is

C. D. Walter, Montgomery Modular Multiplication 35

always an acceptable value, so that if A and B are bounded by 2M then so will
be the output P . This viewpoint, using λ, provides a very tight bound on the
number of bits required for P in terms of those used in M . In a similar vein, it
is easy to check that if A and B are bounded by 1

2r
n then the associated value

of λ satisfies (1) and so the output P is also bounded by 1
2r

n. This alternative
viewpoint provides bounds on the number of digits required for P . Since the
extreme values of λ in (2) coincide for 4M = rn at λ = 1 where (1+λ)M = 1

2r
n,

these values are in some sense the only ones which will work for every acceptable
modulus satisfying the condition of Theorem 2.

Intermediate values of P are bounded by M+αiB, and hence by M+B and
therefore by (2+λ)M . So,

Theorem 3. Suppose the modulus M in MMM satisfies 4M < rn. If inputs
A and B are bounded above by 2M (resp. 1

2r
n), then the output P is simi-

larly bounded above by 2M (resp. 1
2r

n). Moreover, intermediate values of P are
bounded above by 3

4r
n.

For n satisfying the condition given in the theorem, this determines n as
the maximum number of digits needed to represent the various numbers. If n
is also the number of digits in M then n is the exact number of digits required
for intermediate and final values of P in MMM. Otherwise, the computations
require one more digit than M has. So M lies between 1

4r
n−1 and rn−1. This is

the case which usually arises for standard RSA key lengths. In the next section
we consider inter alia whether the extra nth digit is really necessary in such
cases. The answer is surprising.

5 Differential Power Analysis Attacks

Cryptosystems may be vulnerable to timing or differential power attacks [8].
Having eliminated any conditional statements from MMM, it is now necessary
to consider transition cases where digits might acquire particular values with
frequencies which are measurable using power variations. When the value of
n has had to be increased because 4M has just exceeded a power of r, a large
proportion of very small top digit values can be expected to occur in intermediate
results and in final products. These might usefully be partitioned into zero and
non-zero values as a basis for an attack. Of particular interest are the cases
of standard key sizes, such as 512, 768 or 1024 bits when, as usual, they are
multiples of the word length k. Since 2M is a bound on the output, we find that
the top digit is either 0 or 1. This might well provide exactly the handle that an
attacker needs to break the cryptosystem.

Using the same method as described in [14], power or EMR traces from a
number of digit-by-digit products can be combined from the same long integer
multiplication in order to determine whether or not the leading digit of either
input is zero. Alternatively, the Hamming weight of the digit might be measured
as it travels along the bus to or from memory. The frequencies of zero and non-
zero top digits might then be obtained for each long integer multiplication in an

36 LNCS Vol. 2271, c©Springer-Verlag, 2002, pp. 30–39

exponentiation. The theory presented by Walter & Thompson in [13] shows that
the frequency of a zero top digit will be different for squares and multiplications.
(Integrating over the probability density functions for the values of the inputs
provides a coefficient 1

2×
1
2 = 1

4 in the case of a multiplication, and a coefficient
1
3 for a square.) This enables squares and multiplications to be distinguished and
hence secret key bits to be read from the frequency chart if a sufficiently näıve
implementation of exponentiation is used, even if Rivest’s method is applied
to blinding the input text [1, 10]. However, this attack depends on non-zero top
digits appearing with sufficient frequency for this difference to be easily measured
and for the result to be very reliable for each decision.

Software was constructed for MMM in order to check the theory and gauge
the quantity of data that might leak if very small top digit values could be
detected. In particular, the frequency of the top digit being non-zero was of
interest when M satisfied the most common situation, namely M < rn−1 < 2M .
This revealed that the top digit does not behave as if the distribution of outputs
were fairly uniform in the range [0..2M], as one might have expected from the
usual 2M bound on I/O. Indeed, we will now show that

– in such standard circumstances the top output digit from MMM is non-zero
only very exceptionally.

In fact, the final iteration, which was only just necessary, performs in effect an
extra shift down of the AB term in the upper bound M+ABr−n, making it much
smaller than the M component. Thus, from the property P < M+ABr−n <
M+4M2r−n of inputs less than 2M , one can deduce that the output satisfies P <
rn−1 if M+4M2r−n < rn−1. Using the Taylor series expansion for (1+16r−1)1/2

shows that this condition is satisfied when M < rn−1(1−4r−1). So,

Theorem 4. For inputs less than 2M and n satisfying the condition of Theorem
2, the property M < rn−1(1−4r−1) guarantees that the output of MMM satisfies
P < rn−1.

Of course, for M close to this upper bound, outputs re-used as inputs satisfy a
better bound than 2M . So it makes sense to see under what conditions (n−1)-
digit inputs will provide (n−1)-digit outputs. In this case, with similar working
to that just given, the condition that needs to be satisfied is M+rn−2 < rn−1.
Hence,

Theorem 5. For inputs of n−1 digits and M satisfying the property M <
rn−1(1−r−1) the output of MMM also has at most n−1 digits.

For standard configurations using recommended RSA key lengths and typical
off-the-shelf multipliers, n satisfies 1

2r
n−1 < M < rn−1, giving the most signifi-

cant non-zero digit of M in the interval [12r, r−1]. So the condition in Theorem 5
will hold almost always because the exception requires the top digit of M to be
r−1 and the probability of this is only 1 in 2k−1. This is certainly unlikely for 16-
or 32- bit digits, though occasionally the case if only 8-bit words are employed.

C. D. Walter, Montgomery Modular Multiplication 37

Hence, under standard conditions, a DPA attack which attacks “overflow”
output digits in the way described above is unlikely to succeed because the top
non-zero digit of M will usually have an unsuitable value. Of course, the same
cannot be claimed if M occupies n digits and its topmost digit is just 1. As
in the standard case, 2M is a poor upper bound for the inputs and outputs
during an RSA exponentiation. The width of the interval in inequality (2) is still
reasonably large, enabling λ to be chosen fairly small. This will again provide an
upper bound only marginally larger than M and average output values close to
M/2 so that in the region of half the outputs will be expected to have a non-zero
top digit. Hence the DPA attack might become feasible.

Between these two situations, consider the exceptional case with rn−1(1−r−1)
< M < rn−1. This is, in fact, the only case for which the inputs and outputs will
have a different number of digits from the modulus M . By taking the maximum
lower bound for (1+λ)M given in inequality (1), namely when M = rn−1, we
know that 2−1rn(1−

√
1−4r−1) is an upper bound which will hold for the output

if it holds for the inputs. Using the Taylor series expansion for
√

1−x, we obtain
rn−1+rn−2+2rn−3+5rn−4+14rn−5+... as a suitable bound on inputs which is
preserved. Since the residues mod M are expected to be uniformly distributed,
we can expect at most r−1+2r−2+5r−3+14r−4+... of the outputs to be greater
than rn−1, i.e. to have a non-zero nth digit. Probably less than half this number
will occur because such outputs duplicate residues mod M which are less than
rn−1.

So, for an 8-bit multiplier, r = 256 would enable such non-zero digits to be
detected with sufficient frequency for squares and multiplications to be distin-
guished only if at least several thousand exponentiations were performed. Even
then, for a given multiplicative operation in the exponentiation scheme, only
several tens of top digits will be non-zero over the whole sample. The natu-
ral variance will mean that the frequency of these non-zero digits will not be
sufficiently stable to distinguish reliably between squares and multiplies in the
exponentiation. Hence it will be very hard to determine the bits of the secret ex-
ponent unless other data is available. For a 12-bit or larger multiplier, a standard
lifetime bound of 10k exponentiations would certainly make such distinctions im-
possible. In such cases, one could afford to re-introduce a conditional subtraction
to keep the result of modular multiplication less than rn−1:

If M[n-1] = 0 and P[n-1] 6= 0 then P <- P-M

Although this leads to rare timing variations, little is lost if power or EMR
variations reveal these cases anyway. Of course, if the modulus is known to the
attacker and is seen to be one of these exceptional cases, and the input text is
not blinded and individual conditional subtractions can be observed, then the
attacker simply has to simulate the exponentiation, determine whether a square
or a multiplication would generate an observed subtraction and progressively
reconstruct the exponent from this information. Hence, as a matter of course,
the input should be blinded by, for example, multiplying it by a random number
before the exponentiation and performing an appropriate division afterwards
[10].

38 LNCS Vol. 2271, c©Springer-Verlag, 2002, pp. 30–39

One can conclude that, in general, key lengths which are multiples of the
multiplier word length are close to the least efficient as far as Montgomery mul-
tiplication is concerned, but that they are usually no less safe. Potentially unsafe
moduli have been identified, but any lack of security should only affect poorly
designed implementations with very small multipliers, such as 8-bit multipliers.
If these exceptional moduli are excluded or an appropriate conditional subtrac-
tion included for them, then hardware savings can be made by not implementing
the digit of index n for the output register.

6 Exponentiation

A consequence of the extra, unwanted factor r−n in the MMM output is that
every exponentiation has to perform pre- and post- processing. A pre-computed
value for r2n mod M is Montgomery-multiplied with the initial text T requiring
exponentiation. This introduces an extra factor of rn mod M to the result
of every subsequent multiplication compared to the result obtained if classical
modular multiplication were performed instead. To remove this extra factor, a
final Montgomery multiplication by 1 is performed. In [12] it was observed that
taking A = 1 in the version of MMM there produced a result less than M , which
therefore needed no further conditional subtraction.

Here, taking A = 1 gives a bound P < M+Br−n which, when combined
with B < 2M < 1

2r
n, yields P ≤ M , as before, because P is an integer. Of

course, P = M means the initial text T must have satisfied T ≡ 0 mod M . In
the context of cryptography, T must be less than M . Undoubtedly it should not
equal 0, but if it were, then every intermediate result would also be 0, giving 0
as the final output. So here also, with the better value for n than [12] or [6],

Theorem 6. For inputs less than 2M and n satisfying the condition of Theorem
2, a conditional final subtraction to obtain a result in the interval [0,M−1] is
unnecessary in exponentiation using the above version of the MMM algorithm
with the usual pre- and post- processing.

7 Conclusion

By obtaining the best possible bounds on the output, we have shown exactly how
many iterations are necessary in an implementation of Montgomery’s modular
multiplication algorithm in order to avoid the conditional statements which may
be subject to timing attacks in cryptographic hardware. This includes eliminat-
ing the final conditional subtraction from an exponentiation in which the usual
pre- and post- processing of the Montgomery constant rn mod M occurs.

The investigation suggested that it might be both cryptanalytically unsafe
and inefficient to use certain moduli which have standard key lengths, as these
are normally equal to a multiple of the multiplier word length. However, the
potentially weak moduli have been identified as a very small set and the weakness
shown to be very slight: the security of these weaker moduli is only in question

C. D. Walter, Montgomery Modular Multiplication 39

from DPA attacks where a small multiplier is used in an implementation without
input blinding.

For standard RSA configurations, the conditional statements are avoided by a
single extra iteration of the multiplication algorithm. If the weaker moduli can be
avoided completely then the output has the same number of digits as the modulus
and some hardware savings can be made. But, if the weaker moduli cannot be
avoided then, in combination with input blinding, a conditional statement can
be safely re-introduced to keep the output to the same number of digits as the
modulus so that the hardware savings can still be made.

References

1. D. Chaum, Blind Signatures for Untraceable Payments, Advances in Cryptology –
Crypto ’82, R. L. Rivest, A. T. Sherman & D. Chaum (editors), Plenum Press,
New York, 1982, 199–203

2. W. Diffie & M. E. Hellman, New Directions in Cryptography, IEEE Trans. Info.
Theory, IT-22, no. 6 (1976), 644–654

3. S. E. Eldridge, A Faster Modular Multiplication Algorithm, Intern. J. Computer
Math., 40 (1991), 63–68

4. S. E. Eldridge & C. D. Walter, Hardware Implementation of Montgomery’s Modular
Multiplication Algorithm, IEEE Trans. Comp. 42 (1993), 693-699

5. T. El-Gamal, A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms, IEEE Trans. Info. Theory, IT-31, no. 4 (1985), 469–472

6. G. Hachez & J.-J. Quisquater, Montgomery exponentiation with no final subtract-
ions: improved results, Cryptographic Hardware and Embedded Systems (Proc
CHES 2000), C. Paar & Ç. Koç (editors), Lecture Notes in Computer Science,
1965, Springer-Verlag, 2000, 293–301

7. P. Kocher, Timing attack on implementations of Diffie-Hellman, RSA, DSS, and
other systems, Advances in Cryptology – Crypto ’96, N. Koblitz (editor), Lecture
Notes in Computer Science, 1109, Springer-Verlag, 1996, 104–113

8. P. Kocher, J. Jaffe & B. Jun, Differential Power Analysis, Advances in Cryptology
– Crypto ’99, M. Wiener (editor), Lecture Notes in Computer Science, 1666,
Springer-Verlag, 1999, 388–397

9. P. L. Montgomery, Modular multiplication without trial division, Mathematics of
Computation, 44 (1985), no. 170, 519–521

10. R. L. Rivest, Timing cryptanalysis of RSA, DH, DSS, Communication to sci.crypt
Newsgroup, 11 Dec 1995

11. R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Comm. ACM, 21 (1978), 120–126

12. C. D. Walter, Montgomery Exponentiation Needs No Final Subtractions, Electron-
ics Letters, 35, no. 21, October 1999, 1831–1832

13. C. D. Walter & S. Thompson, Distinguishing Exponent Digits by Observing Mod-
ular Subtractions, Topics in Cryptology − CT-RSA 2001, D. Naccache (editor),
Lecture Notes in Computer Science, 2020, Springer-Verlag, 2001, 192–207

14. C. D. Walter, Sliding Windows succumbs to Big Mac Attack, Cryptographic Hard-
ware and Embedded Systems – CHES 2001, Ç. Koç, D. Naccache & C. Paar (edi-
tors), Lecture Notes in Computer Science, 2162, Springer-Verlag, 2001, 286–299

