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Abstract. Because of the large word lengths involved, communication
and buffering are potentially the major problems in implementing the
modular arithmetic used in several cryptosystems. It is shown here how
a single, linear systolic array eliminates much of the associated overheads,
thereby improving through-put and the ratio of speed to area for modular
exponentiation. Alternative forms produce simpler processing elements
and make fuller use of the hardware, making it more easily implemented
in current technology. Such designs are regarded as much safer for use
in smartcards and embedded systems as they offer greater protection
against attacks using differential power analysis. A 1024-bit array can be
built in an area comparable to a 64-bit multiplier.

Index Terms: Computer arithmetic, cryptography, RSA cryptosystem,
Diffie-Hellman, linear systolic array, Montgomery modular multiplication,
exponentiation, differential power analysis, DPA.

1 Introduction

Efficient modular exponentiation is essential to fast encryption using, for exam-
ple, the RSA [19], ElGamal [5], Diffie-Hellman [3] or DSA [17] schemes. Brickell
[2] describes the earliest hardware speedups for modular multiplication. He em-
ploys digit slices working in parallel and redundant number representations in
order to perform modular multiplication by repeated addition. However, the si-
multaneous broadcast of multiplier digits to all digit positions is required, with
a consequent burden on hardware area, capacitance and clock period. To avoid
this, digits in the adder must be processed serially using a systolic array. In
[22], the author showed how this could be done by using Montgomery’s modular
multiplication algorithm [16] which reverses the order of processing multiplier
digits when compared with the standard multiplication algorithm. This was the
first design where, apart from clock and power, all the communication was en-
tirely local, between nearest neighbour processing elements. Without the need
to await the completion of carry propagation, the clock cycle is much shorter,



2 IEE Computers and Digital Techniques 147 no. 5, Sept. 2000, pp. 323-328

so that throughput is increased and hardware cost is reduced. Indeed, there is
improved latency over the most recent implementations of traditional methods
[24].

For convenience, [22] initially describes a full, rectangular, systolic array with
one row for each addition step and as many rows as are necessary to complete a
modular multiplication. The final paragraphs describe the possibilities of fewer
rows and, in particular, mention its minimal linear form as a single row which can
perform two multiplications in parallel by feeding the output directly back in.
This indeed provides a modular equivalent of the pipeline multiplier of Jackson
et al. [7]. Here some quantification and amplification of the benefits of this special
case are given.

In particular, we first show how to adapt the array to modular exponentiation
without having to buffer results or idle between successive multiplications. The
square and multiply algorithm for exponentiation leads to only 75% use of the
resulting hardware on average. Moreover, the silicon area is still substantial since
each processing element (PE) contains two multipliers. The second part of this
article therefore reduces the PEs to contain a single multiplier and makes them
work on every cycle instead of only on alternate cycles to compute one modular
multiplication. This cuts the total area almost in half, making it more amenable
to current technology and allows 100% use of the array rather than 75%.

Alternative linear arrays have been given by Kornerup [14] and Jeong and
Burleson [8]. By comparison, Jeong and Burleson [8], Fig. 5, require 50% more
clock cycles per multiplication than here and perform only one multiplication
at once rather than two as here. Their array uses the same number of PEs and
they are also more complex than here. Hence throughput for an exponentiation
is at least 3 times slower and the hardware has the additional overhead of several
extra registers (7 for the binary case). The PEs there only operate on every third
cycle. The most competitive hardware is that of Kornerup, who groups pairs of
product terms [14], Fig. 2, in order to utilise the array fully. Consequently, he
has half the number of cells as here but they are twice as complex, yielding the
same overall hardware area. By running the two halves of his PEs in parallel, his
cell speed is only marginally slower than that here but he uses half the number
of clock cycles. Thus, his array has superior latency by a factor of almost 2,
but similar throughput since two modular multiplications cannot be computed
in parallel. Two copies of his array are needed for efficient exponentiation. This
provides almost twice the speed as here but at a cost of just over twice the
hardware and slightly more buffering is required. The area×time product is
thus similar. With pressure on chip area, the more minimal design here is of
importance. Our second design uses only a quarter of the area of Kornerup and
reduces area×time for exponentiation by 25% on average.

The exposition closes with a look at the more general context of the hardware,
particularly considering its potential strength against differential power analysis
[12], [13].
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2 The Systolic Array for Modular Multiplication

Suppose (A×B) mod M is to be calculated, where the radix r of the repre-
sentations is prime to the modulus M and the non-negative integers A, B are
bounded above by, say, 2M . Assume A, B and M all have at most n digits in
base r, with, for example, A =

∑n−1
i=0 air

i where 0 ≤ ai < r. In practice, for
the systolic arrays here, r will probably be a power of 2 between 22 and 264,
giving digits of between 2 and 64 bits. Historically ([2],[4],[23]), redundant rep-
resentations have been used to limit carry propagation and enable parallel digit
operations. This is unnecessary here because numbers are processed digit seri-
ally, least significant digit first. This allows in-line conversion back to a standard,
non-redundant representation if necessary.

Montgomery’s modular multiplication algorithm [16] is essential here. It com-
putes R = (A×B)r−n mod M where n is the number of addition cycles in the
process. The extra power of r is ignored at this point, but will be treated when
exponentiation is reached. It arises because the ith iteration of the algorithm
computes the partial modular product

Ri+1 = r−1(Ri + aiB + qiM)

where R0 = 0 and qi is a digit chosen to make Ri + aiB + qiM exactly divisible
by r. The j−1st digit of Ri+1 is obtained using the recurrence relation

ri+1,j−1 + r×ci,j+1 = ri,j + aibj + qimj + ci,j (∗1)

where ci,j+1 ∈ [0..2r−2] is the carry for propagation up the adder, initialised
with ci,0 = 0. A model (i, j)th processing element (PE) for calculating this in
the rectangular array [22] is illustrated in Figure 1. The ith row computes Ri+1

from Ri. For simplicity, suppose each PE operates in a single clock cycle. Then
the (i, j)th PE processes the digits of (*1) at clock cycle time 2i+j, buffering
or storing them as indicated. PE (i, 0) is slightly different as it determines qi as
well, and uses 0 for its input ci,0.

To ensure the calculation of (*1) is possible, the inputs must be generated
in time. This can be checked using a data dependency graph, but we need exact
times for later. According to the formula, ri,j is generated by cell (i−1, j+1)
at time 2i+j−1, which is just in time for its use by cell (i, j). Also, qi must
be generated by cell (i, 0) at time 2i ready for use by cell (i, 1) at time 2i+1.
Its definition is qi ≡ −m−10 (ri0 + aib0) mod r where ri0 is generated by cell
(i−1, 1) at time 2i−1, also just in time. If cell (i, 0) has difficulty in performing
its calculation within the same time as the other PEs then various simplifications
are possible (see [22]): in particular, M might be scaled so that −m−10 ≡ 1 mod r
and/or B might be shifted up so that b0 = 0. Section 6 presents more detail for
the latter.

For inputs of up to n digits, the topmost ordinary PE has index j = n−1. For
greater j, the inputs bj and mj are 0 so that no multipliers are necessary in the
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Fig. 1. The (i, j)th Processing Element for Array Modular Multiplier

PE. Since, by assumption, A < 2M and B < 2M , we can prove inductively that
Ri < 3M from Ri+1 = r−1(Ri + aiB+ qiM) < r−1(3M + 2(r−1)M + (r−1)M)
= 3M . So the (i, n)th PE will generate digit ri+1,n−1 with a carry ci,n+1 of at
most 2. Hence, (assuming a radix of at least 4) we just need a very simple top
(i, n+1)th PE which calculates and stores ri+1,n = ci,n+1 (the other inputs to
(*1) are zero) and feeds it back and down to the (i+1, n)th PE at the right
time. At the row with i = n we have ai = 0 so that Rn+1 = r−1(Rn + qiM)
< r−1(3M + (r−1)M) ≤ 2M . Thus row n generates output which satisfies the
input condition of being less than 2M . This is then suitable for re-input during
exponentiation. Note that extra PEs at the top end won’t affect the calculations
as long as the appropriate most significant digits are initialised to 0.

To obtain a linear, pipeline modular multiplier, only one row of PEs is taken
(the ith, for example). For this, the jth PE behaves like cell (i, j) of the rect-
angular array, computing (*1) at times 2i+j for i = 0, 1, ..., n. Data which was
previously passed between rows must be re-directed back into the single line of
PEs. So the output ri+1,j−1 from the jth PE is fed into the j−1st PE where
it arrives at exactly the right time for executing (*1). Of course, some control
must be added to initialise and clock the registers correctly and to catch the
final output rn+1,j−1 at the right time. This is shown in Figure 2.
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Fig. 2. I/O at Time 2i+j for the jth PE of the Pipeline Multiplier

Each PE is only used on alternate clock cycles, the jth one operating on cycles
j, j+2, j+4, etc. So another modular multiplication can be interleaved in the
gaps, say (A′×B′)r−n′

mod M ′, running one cycle, or any odd number of cycles,
behind the first multiplication. Some communication wires and registers may
need to be duplicated for this and appropriate control added, but the multipliers
and adder are reused. This is also shown in Figure 2, which illustrates the arrival
of updating input for the other, interleaved multiplication.

The linear array may be modified to have all I/O through cell 0. Such a design
would allow the circuit to be incorporated easily into awkward spaces on a chip.
Thus, in Figure 3, the interleaved output digits rn+1,j and r′n+1,j are piped back
to cell 0. Digit rn+1,j is created at time 2n+j+1 and so, progressing one PE at
a time, reaches cell 0 at time 2n+2j+1, showing that it does not overwrite the
other output digits on the same pipeline. A more complex arrangement may be
needed for routing the digits of M and B from cell 0. The modulus digit mj is
needed for first use in the jth PE at time j. By sending digits mj out from cell 0
at the rate of two digits per cycle and at the speed of two cells per cycle, mj can
leave at time j div 2 and still arrive just in time. This explains why two digits
of M have to pass through each PE and only one is clocked through a register.
However, if the PE is slower than this pipeline, then a simpler arrangement is
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possible, with all the digits of M in a single pipeline advancing by one PE every
half of a cell cycle. A control bit piped along the array to reach cell j at time
j−1 enables the correct modulus digit to be captured and loaded into the PE
register and for any other cell initialisation, such as the resetting r0j = 0, to be
signalled. The digits of B are treated similarly, as are the digits of M ′ and B′,
which are not shown in the figure.
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Fig. 3. Communication for I/O directed through cell 0

3 Exponentiation

The cryptographic applications of this array require exponentiating plaintext or
ciphertext T to some power ∆ =

∑d−1
i=0 δi2

i of d bits, say. This can be done

by computing successive squares Si = T 2i mod M and cumulative products
Pi =

∏i−1
j=0 T

δj2
j

mod M using the parallel modular multiplications:

Si+1 ← Si×Si mod M
Pi+1 ← Pi×S′i mod M
where S′i = 1 for δi = 0
and S′i = Si for δi = 1
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If Montgomery’s algorithm is used then each multiplication picks up an extra
factor r−n where n is the number of addition cycles per multiplication. This
is compensated for by pre-Montgomery-multiplying T by r2n mod M so that
Trn mod M is fed into the exponentiator. Each multiplication or squaring main-
tains the factor rn so that T∆rn mod M is output. The only necessary post-
processing is then another Montgomery multiplication, this time by 1, which
removes the unwanted rn.

Both the square and multiply operations can be calculated in parallel by
the array and successive pairs pipelined with virtually no intervening breaks or
buffering. Thus the array should be very well suited to exponentiation, as each
cell can then be almost fully utilised, performing its task on almost every cycle.
The only reservation for the scheme here is that the multiplications by 1 are
included here but generally omitted. (Multiplication by 1 here would actually be
done via Montgomery multiplication by rn.) Consequently, on average the array
is utilised at only 75% of its full capacity. However, the exponentiation will still
normally have to perform d squarings and therefore must take at least the time
used here (but see [6]).

A PE of the exponentiating array is illustrated in Figure 4. In terms of the
previous notation, the interleaved multiplication sequences have

A = B = Si R = Si+1 A′ = S′i (= rn or Si) B′ = Pi R′ = Pi+1

where the choice for A′ is determined by the exponent bit δi. The array is
initialised for the first two simultaneous multiplications by supplying M ′ = M
and A = B = Trn mod M (= S0), setting B′ = rn (= P0) and computing
A′ from A, as defined. Most of this and the subsequent operation is just as in
Figure 2. The main difference is that the digits of B and B′ are also needed for
immediate consumption by the neighbouring cell.

For the interface between successive multiplications, suppose the products
R = Si and R′ = Pi have just been computed and are about to be used as the
inputs B and B′ for the next pair of multiplications. Since the ith multiplication
is offset by 2in clock cycles, the jth output digits rn,j and r′n,j are generated by
cell j+1 at times 2in+j−1 and 2in+j respectively. These digits become inputs
bj and b′j for the following multiplications. They must be ready for use by cell
j at times 2in+j and 2in+j+1 respectively. This is just possible with no gap
between successive multiplication cycles. So there is no need for buffering the
data further nor is there any idle time in the hardware.

The other inputs A and A′ must also be checked for timeliness. A is initialised
digit serially from cell 0. Thereafter, the output R = Si and S′i provide the
inputs A and A′. The digit rn,j is computed at time 2in+j−1 and reaches cell
0 at exactly the right time 2in+2j for its first use there as aj . This leaves one
clock cycle for cell 0 to compute a′j from aj using A′ = δiA + δir

n. The final

output of the array, T∆ mod M , is a value of R′, and so can be collected serially
from cell 0 after a multiplication by 1 to remove the extra power of r.
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Fig. 4. jth PE for Exponentiation

As in Figure 2, the main control bit is set by cell 0 on every 2nth cycle and
reaches the jth PE at time 2in+j−1 (i = 0, 1, 2, ...). It indicates that the cell
should update its current bj to the incoming rn,j , and make a similar change
to b′j on the next clock tick. A similar control bit indicates when the outputs
rn,j and r′n,j should be captured for routing to cell 0. If cell 0 is now slower
than the normal PE, extra cycles can be inserted between successive multiplica-
tions to allow it to complete without slowing down the clock. Specifically, each
multiplication is just allowed to run on as necessary before starting the next one
(perhaps with some updating for the next multiplication) but the result is still
extracted at the same point. This is a minimal extra cost as n is relatively large.
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4 External Connections and Comparative Study

Hardware for modular multiplication will probably either reside on a dedicated
chip or be part of a larger digital signal processing chip. In both cases the I/O
bandwidth is likely to be limited. Hence the external communication problems
will be similar. With little if any loss of generality, we therefore phrase the discus-
sion in terms of a dedicated chip. It also suffices to consider only exponentiations
since data rates for multiplication sequences will be about twice those for expo-
nentiations to the power 1 (because the exponentiation may perform a useless
final squaring).

The connections of the array to the external world are fairly simple: the inputs
are M , T , ∆ and perhaps r2n mod M , and the output is R′ = T∆ mod M
after post-processing. Each of these is required, respectively generated, digit
serially. Corresponding input and output digits are separated by time 2dnt.
At worst, three digits are input and one digit output from the array over the
operation time t of a cell. In practice, chips have relatively few pins for I/O and
communication with the rest of the world may be at a slower clock speed. Hence
external communication of large integers is in effect limited to the sequential
I/O of a few bits over a number of clock cycles. Providing the radix r is not too
large, the internal clock not too fast, and also the number of pins not too small,
the chip I/O will be fast enough not to hold up the exponentiation and also fast
enough to avoid the need for more than minimal buffering of the I/O. Current
internal chip and communication technologies are sufficiently in line with each
other that these conditions are easily satisfied.

A desirable choice for r might involve digits with the same range as normal
machine arithmetic, say 32 or even 64 bits of input, so that PEs can use a
standard off-the-shelf multiplier design containing years of optimisation (e.g.
[18]) and the I/O requirements might match internal bus speeds. However, a
large RSA word length of perhaps 210 bits leads to huge usage of chip area from,
for example, 64 32×32-bit multipliers. Then, assuming a multiplication takes 4
cycles, the throughput for a full length exponent is 210 bits (=text length) every
218 clock cycles (= 2dnt = 2×210×25×22 cycles). On a 400MHz clock, this
would lead to a data decryption rate of about 1.5Mbits/sec. After scaling for
technology differences, this is essentially the same as the programmable active
memory (FPGA) technology of Shand et al. [21] which ran at 40MHz and gave
a throughput of 165Kbits/sec for 210-bit inputs and keys. Although they used a
pipelined version of Montgomery’s algorithm, they also made use of a fourfold
speedup from using the factorisation of the modulus and the Chinese Remainder
Theorem to divide the operation into two parts running in parallel. This is
balanced by using about four times the silicon area here (about 400K gates
as opposed to 100K for their equivalent ASIC) to obtain similar throughput
per clock cycle. Of course, such large multipliers, which take several cycles to
operate, can be pipelined. With minor overhead, we could build each PE with
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a single, pipelined multiplier. Then both the multiplications could be computed
in 5 cycles rather than 4, thereby reducing the Area×Time cost by almost half.

A 56×64 bit integer multiplier uses about 3% of a large chip in today’s tech-
nology [20]. An array with r = 256 would require about n = 18 PEs and hence 36
such multipliers (18 if pipelined) plus a little more area for the communications.
This puts it on the limit of current technology. Again, assuming it is a 4-stage
multiplier, we obtain only an average exponentiation throughput of 1 bit per
27 cycles. If the chip also has a frequency multiplier of 4, then RSA decryption
is still a mere 1 bit per 25 internal bus cycles − much below the bus capacity.
However, the I/O comes in bursts, 56×25 bits plaintext input per bus cycle for
these parameters, plus the same again for the modulus if that is also needed.

At the opposite extreme, the smallest choice of r = 2 probably suffers from
too high an overhead in terms of storage area and time spent clocking latches. As
the total area required is only a very small constant multiple of the area required
to hold the input data, the choice is close to the minimal possible area needed to
perform exponentiation. Slightly larger r, say 4 or 8, are of more interest. The
former would require a PE with two 2-bit multipliers and containing about 26

gates. There would be 29 PEs for 210-bit inputs, yielding an array with similar
area to only a couple of 64-bit multipliers (about 212 full adders each). The array
would perform decryptions in 2dnt = 220 of its cycles, whereas the two 64-bit
multipliers could complete a modular multiplication in 28 of their cycles and so
a decryption in an average of 1.5×218 of its much longer cycles. The computing
powers are therefore roughly similar for comparable areas. Thus the array here
appears to be at least as cost effective. However, with only local connections and
regular nature, layout is much more straightforward and it can be adjusted more
easily to fit unusually shaped areas on the chip. Its parameter r can be chosen
to make it utilise fully all available free space and, as we shall see, it is more
resistant to differential power analysis attacks.

Throughput for the array here is essentially the same as for the parallel digit
implementation of modular multiplication described in [24] if it uses the same
basis r and identical circuitry for computing digit sums and products. The main
advantages of the exponentiation process here are that a considerable digit dis-
tribution area is saved, and each modular multiplication avoids the small number
of extra iterations which are required there to enable the timely arrival of the
distributed digits. Thus, this array should have slightly better throughput and
should have noticeably smaller area. Moreover, in a design like that of [24], all the
input and output digits are consumed, respectively generated, simultaneously.
Since the number of I/O bits in an RSA cryptosystem exceeds the number of
pins available by an order of magnitude, the I/O data must be supplied serially
and buffered on the chip. This decreases the performance of [24] as far as latency
is concerned, at best to what the array here produces, and makes the area dis-
crepancy even greater. In conclusion, the design here seems to out-perform the
best modular exponentiation circuits which employ parallel digit processing and
multiplication via repeated addition.
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5 Elliptic Crypto-Systems

The standard integer RSA algorithm has a corresponding version for elliptic
curves [10], [15] over a finite field F. The above hardware design is particularly
well suited to the case when this field has odd prime order p: elements are
represented by integers modulo p rather than modulo M , but otherwise the
arithmetic is identical.

Integer RSA uses the multiplicative group of residues prime to the modu-
lus M , whilst elliptic RSA uses a group of points on the elliptic curve which is
generally written additively. Encryption and decryption are performed by mul-
tiplying the message point (x, y) on the chosen elliptic curve y2 = x3+ax+b by
a key d. This is the analogue of exponentiation to the power d and is achieved
by the equivalent of the square and multiply algorithm in Section 3. Doubling
(x, y), which corresponds to squaring, gives the point (x′, y′) defined, in the case
of characteristic greater than 3, by (see [11]) :

x′ =

(
3x2 + a

2y

)2

− 2x y′ =

(
3x2 + a

2y

)
(x−x′)− y

and the sum (x′, y′) = (x1, y1) + (x2, y2) is given by

x′ =

(
y2 − y1
x2 − x1

)2

− x1 − x2 y′ =

(
y2 − y1
x2 − x1

)
(x1−x′)− y1

By far the most expensive operations here are inverting y and x2−x1. Agnew,
Mullin & Vanstone [1] recommend swapping the affine co-ordinates (x, y) for
projective ones (x, y, z) so that no inversion is required until encryption is com-
pleted and affine co-ordinates must be recovered. For odd prime fields, elliptic
point doubling using projective co-ordinates requires 10 field multiplications and
elliptic point addition 16 field multiplications (see [25], A.10.4 and A.10.5). The
miscellaneous other operations (field additions, subtractions and scalar multipli-
cations) are trivial to perform in one cycle each.

The extra arithmetic in doubling and adding points means use of the ar-
ray here is more complex: there are a few more registers and so extra control.
However, the schedule for doubling and adding elliptic points is simpler than
that for squaring and multiplying in the integer case. Two additions from one
or other can always be done simultaneously. So doubling and adding of points
can be arranged sequentially instead of interleaved, yet still using the array fully.
Consequently, additions need only done when necessary. The final inversion to
recover affine co-ordinates can be done by exponentiation, using the array in the
same way as before, without change and with the same efficiency. Overall, with
inversion using only a fraction of the total time, the array is almost fully utilised.
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6 Re-Structuring for 100% Use

For larger radices, the hardware cost is considerable. We suggest two ways in
which the number of multipliers might be halved. First, the equation (*1) may
be split into two almost identical sequential multiply-accumulate operations with
one multiplication each:

ti,j + r×di,j+1 = ri,j + ai×bj + ci,j (∗2a)
ri+1,j−1 + r×ci,j+1 = ti,j + qi×mj + r×di,j+1 (∗2b)

where ti,j is an intermediate digit value with carry di,j+1. A PE with two multi-
pliers would perform the multiplications of (*1) in parallel. The cheaper solution
of one multiplier used twice to perform (*2) will take twice the time, but, with
just half the area, the product area×time is unchanged. In that context a larger
cell 0 with two multipliers working in parallel could dispatch the required digits
in time without any problems. If the single multiplier is large enough, it might
be pipelined to perform the two multiplications in less than double the time,
thereby reducing the area×time product.

Secondly, exponentiation is slightly unsatisfactory for a couple of reasons.
Only the standard square and multiply method is well suited to the array here,
and, on average, it still leaves the PEs unused for 25% of the time. To solve this,
the array can be restructured to make each PE work on the same multiplication
for every cycle. The original PE functionality is split in two for using a single
multiplier. Equation (*1) is re-written as

ti,j = ai×bj (∗3a)
ri+1,j−1 + r×ci,j+1 = ri,j + ti,j + qi×mj + ci,j (∗3b)

by introducing intermediate values ti,j . Both (*3a) and (*3b) are executed by
the jth PE, the first on cycle 2i+j−1 and the second on cycle 2i+j. Outputs ri,j
and ci,j are produced and used on the same cycles as before. An extra control
bit selects between the two functions of the PE causing a negligible increase
in execution time. Once r increases above 4, the area gained from halving the
number of multipliers quickly outweighs the small area for extra control. This
soon gives a hardware saving of over a third. However, exponentiation takes
only 50% longer than before because the multiplications and squares are run
sequentially, but no useless multiplications by 1 are done. So, for larger r, this
may be a cost effective solution as both area and area×time are improved.

Digits ai and bj need to be available one clock cycle earlier than before.
Multiplications and squarings alternate so that Pi is only required as an input
on every other multiplication. Its value must be buffered with an extra register
in each PE. It will certainly be available in time for use as the B input. Si is used
in every multiplication as the A input and for squarings also as the B input. Its
digits rn,j are calculated at time 2in+j−1 and reach cell 1 for use as aj at time
2in+2j. It doesn’t reach cell 0 in time, but this is not important if b0 = 0. The
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condition b0 = 0 was needed before to simplify cell 0 to help it operate in time.
The same solution is employed here, namely to shift B up. B is input with a
hardwired shift up to make b0 = 0. The cost is cheap: at most one extra iteration
per multiplication, which is required to ensure the output is under 2M , and a
different power of r being introduced into Montgomery products. As part of the
shifted input B = rRn, rn,j is calculated at time 2in+j−1 and now first required
as bj+1 in a0bj+1 at time 2in+j. As before, the digit qi ≡ −m−10 ri,0 mod r is
computable by cell 0 at time 2in, the cycle after ri,0 is generated.

Other exponentiation schemes now become possible. In particular, the m-ary
method [9] requires a pre-computed list of m−1 products. These can be stored
in cyclic shift registers at cell 0 and loaded through that cell in the same way as
Si or Pi under the square and multiply scheme.

7 Differential Power Analysis

Differential power analysis (DPA) [13] is a method for attacking cryptographic
hardware through variations in current arising from data dependent calculations.
Typically an attack might be made against a smartcard or embedded crypto-
graphic device containing a private key. The presence of a high noise-to-signal
ratio in the current means that measurements are best made by averaging over
a large number of cases. When the square and multiply method is used, the
attacker would hope to average over a large enough set of exponentiations to be
able to separate squares from multiplies and thereby read off the secret exponent.
Similarly, where the same argument A, perhaps related to a chosen plaintext,
is used repeatedly in calculating products A×B it might be possible to average
over the many values of B to identify some property of A.

In standard implementations which use a single, large multiplier the digits
of an operand A are very clearly separated out into the discrete time intervals
when they are used. Also, with such hardware, squarings and multiplications
have clearly defined beginnings and endings. With the systolic array described
here, all multiplications merge into each other. First, successive multiplications
overlap by about 2n cycles. Also, at any instant, all the PEs which are computing
a digit product of one multiplication A×B are using different digits of A, not the
same one. Hence the power variation is very much in line with the average digit
of A rather than a succession of ups and downs representing the sequential use
of distinctive individual digits of A. This makes the recognition of a particular
operand A much more difficult in DPA, and the distinction between squares and
multiplies irrelevant.
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8 Conclusion

We have constructed three array modular multipliers and exponentiators para-
metrised by the radix r of the input representation, namely those implementing
equation (*1) directly, and those implementing (*1) via equations (*2) or (*3).
Each is well suited to the modular arithmetic of many encryption schemes, and
also RSA over elliptic curves of non-zero characteristic. For larger r, the last
design is not much more than half the size of the first, but uses only 50% more
time. However, in all cases a choice of r can be made to make maximal use of the
chip area available for the array, and thereby minimise latency. The processing
elements consist of standard components, the main one being one or two multi-
pliers for base r digits, which might be picked off the shelf. As the designs are
linear with I/O through one end, the circuits are easy to lay out and can even
be bent around corners to fit into any odd-shaped space. The time per expo-
nentiation is O(ndt) where the exponent has d bits, the modulus and input text
have n digits base r and t is the execution time for the digit multiplier. There
is no overhead for short inputs: they are proportionally faster and use the time
expected from supplying smaller values of n and d.

Unlike parallel digit implementations using the classical modular multipli-
cation algorithm, the array can be implemented using non-redundant represen-
tations, and yet there are no delays for carry propagation. This both increases
clock speed by reducing critical path lengths and reduces area by eliminating
redundancy and much of the communication wiring. Only local communication
is required. There is no costly simultaneous digit distribution across the whole
circuit. Furthermore, another efficiency gain comes through the sequential digit
I/O, which helps to reduce the necessity of buffering data. The design now makes
real time RSA decryption with 1024 bit keys closer on a single chip. Finally, the
arrays will be of particular use in set top boxes and smartcards since they seem
to give much greater protection against attacks using differential power analysis.
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