
Montgomery’s Multiplication Technique:
How to Make it Smaller and Faster

Colin D. Walter

Computation Department, UMIST
PO Box 88, Sackville Street, Manchester M60 1QD, UK

www.co.umist.ac.uk

Abstract. Montgomery’s modular multiplication algorithm has enabled
considerable progress to be made in the speeding up of RSA cryptosys-
tems. Perhaps the systolic array implementation stands out most in the
history of its success. This article gives a brief history of its implemen-
tation in hardware, taking a broad view of the many aspects which need
to be considered in chip design. Among these are trade-offs between area
and time, higher radix methods, communications both within the cir-
cuitry and with the rest of the world, and, as the technology shrinks,
testing, fault tolerance, checker functions and error correction. We con-
clude that a linear, pipelined implementation of the algorithm may be
part of best policy in thwarting differential power attacks against RSA.

Key Words: Computer arithmetic, cryptography, RSA, Montgomery modular
multiplication, higher radix methods, systolic arrays, testing, error correction,
fault tolerance, checker function, differential power analysis, DPA.

1 Introduction

An interesting fact is that the faster the hardware the more secure the RSA
cryptosystem becomes. The effort of cracking the RSA code via factorization of
the modulus M doubles for every 15 or so bits at key lengths of around 210 bits
[10]. However, adding the 15 bits only increases the work involved in decryption
by ((1024+15)/1024)2 per multiplication and so by ((1024+15)/1024)3 per ex-
ponentiation, i.e. 5% extra! Thus speeding up the hardware by just 5% enables
the cryptosystem to become about twice as strong without needing any other
extra resources. Speed, therefore, seems to be everything. Indeed it is essential
not just for cryptographic strength but also to enable real time decryption of the
large quantities of data typically required in, for example, the use of compressed
video.

On the other side of the Atlantic, the first electronic computer is generally
recognised to be the Colossus, designed by Tommy Flowers, and built in 1943-4
at Bletchley Park, England. It was a dedicated processor to crack the Enigma
code rather than a general purpose machine like the ENIAC, constructed slightly
later by John Eckert and John Mauchly in Philadelphia. With the former view of



2 Proc. CHES 99, LNCS vol. 1717, pp. 80-93, Springer, 1999

history, cryptography has a fair claim to have started the (electronic) computer
age. Breaking Enigma depended on a number of factors, particularly human
weakness in adhering to strict protocols, but also on inherent implementation
weaknesses.

Timing analysis and differential power analysis techniques [12] show that
RSA cryptosystems mainly suffer not from lack of algorithmic strength but also
from implementation weaknesses. No doubt governments worked on such tech-
niques for many years before they appeared in the public domain and have devel-
oped sufficiently powerful techniques to crack any system through side channel
leakage. Is it a coincidence that the US became less paranoid about the use of
large keys when such techniques were first published? Now that there seems to be
no significant gain to be made from further improvement of algorithms, the top
priority must be to prevent such attacks by reducing or eliminating variations
in timing, power and radiation from the hardware.

This survey provides a description of the main ideas in the hardware imple-
mentation of the RSA encryption process with an emphasis on the importance
of Montgomery’s modular multiplication algorithm [17]. It indicates the main
publications where the significant contributions are to be found, but does not
attempt to be exhaustive. The paper discusses the major problems associated
with space- and time- efficient implementation and reviews their solution. Among
the issues of concern are carry propagation, digit distribution, buffering, com-
munication and use of available area. Finally, there are a few remarks on the
reliability and cryptographic strength of such implementations.

2 Notation

An RSA cryptosystem [20] consists of a modulus M , usually of around 1024 bits,
and two keys d and e with the property that Ade ≡ A modM . Message blocks A
satisfying 0 ≤ A < M are encrypted to C = Ae modM and decrypted uniquely
by A = Cd modM using the same algorithm for both processes. M = PQ is
a product of two large primes and e is often chosen small with few non-zero
bits (e.g. a Fermat prime, such as 3 or 17) so that encryption is relatively fast.
d is picked to satisfy de ≡ 1 modφ(M) where φ is Euler’s totient function,
which counts the number of residue classes prime to its argument. Here φ(M) =
(P − 1)(Q− 1) so that d usually has length comparable to M . The owner of the
cryptosystem publishes M and e but keeps secret the factorization of M and
the key d. Breaking the system is equivalent to discovering P and Q, which is
computationally infeasible for the size of primes used.

The computation of Ae modM is characterised by two main processes: mod-
ular multiplication and exponentiation. Here we really only consider computing
(A×B) modM . Exponentiation is covered in detail elsewhere, e.g. [9],[28]. To
avoid potentially expensive full length comparisons with M , it is convenient to
be able to work with numbers A and B which may be larger than the modulus.
Assume numbers are represented with base (or radix) r which is a power of 2,
say r = 2k, and let n be the maximum number of digits needed for any number



C. D. Walter, Montgomery’s Multiplication Technique 3

encountered. Here r is determined by the multiplier used in the implementation:
an r×r multiplier will be used to multiply two digits together. The hardware
also determines n if we are considering dedicated co-processors with a maximum
register size of n digits. Generally, M must have fewer bits than the largest
representable number; how much smaller will be determined by the algorithm
used.

Except for the exponent e, each number X will have a representation of the
form X =

∑n−1
i=0 xir

i. Here the ith digit xi often satisfies 0 ≤ xi < r, yielding a
non-redundant representation, i.e. one for which each representation is unique.
The modulus M will always have such a representation. However, in order to
limit the scope of interactions between neighbouring digits, a wider range of
digits is very useful. Typically this is given by an extra (carry) bit so that
digits lie in the range 0 .. 2r−1. For example, the output from a carry-save adder
(with r = 2) provides two bits for each digit and so, in effect, is a redundant
representation where digits lie in the range 0 .. 3 rather than the usual 0 .. 1. Here
the k-bit architecture means that our adder will probably propagate carries up
the length of a single digit, providing a “save” part in the range 0 .. r−1 and a
“carry” part representing a small multiple of r. A digit x split in this way is
written x = xs + rxc. In fact, the addition cycle in our algorithms involves digit
products, so that a double length result is obtained. Hence, with some notable
exceptions, the carry component regularly consists of another digit and a further
one or two more bits. In a calculation X ← X+Y , the digit slices can operate
in parallel, with the jth digit slice computing

xj,s + rxj,c ← xj,s + xj−1,c + yj

The extra range of xj given through the carry component keeps xj from having
to generate a separate carry which would need propagating. Since only old values
appear on the right, not new ones, carry propagation does not force sequential
digit processing. The digit calculations can therefore be performed in parallel
when there is sufficient redundancy.

3 Digit Multipliers and their Complexity

Early modular multiplication designs treated radix 2, 4 or even 8 separately at a
gate level. With rapidly advancing technology, these have had to be replaced by
the generic radix r viewpoint which is now essential for a better understanding
of the general principles as well as for a modular approach to design and for
selecting from parametrised designs to make best use of available chip area. To-
day’s embedded cryptosystems are already using off-the-shelf 32-bit multipliers
[21] where reduction of the critical path length by one gate makes virtually no
difference to the speed − and would probably cost too much in terms of addi-
tional silicon area. These r×r multipliers form the core of an RSA processor,
forming the digit-by-digit products.

In the absence of radical new algorithms we need to be aware of complexity re-
sults for multiplication but prepared to use pre-built state-of-the-art multipliers



4 Proc. CHES 99, LNCS vol. 1717, pp. 80-93, Springer, 1999

which contain years of experience in optimisation and which come with a guar-
antee of correctness. Practical planar designs are known for multipliers which are
optimal with respect to some measure of time and area [3], [4], [15], [16], [19],
[23]. A reasonable assumption which held until recently is that wires take area
but do not contribute noticeably to time. Under such a model, Area×Time2
complexity for a k-bit multiplication is bounded below by k2 [3] and this bound
can be achieved for any time in the range logk to

√
k [16]. Such designs tend to

use the Discrete Fourier Transform and consequently involve large constants in
their measures of time and area. There are more useful designs which are asymp-
totically poorer but perform better if k is not too large. The cross-over point is
greater than the size of the digits here [15]. So classical multiplication methods
are preferable. Indeed, for a chip area of around 107 transistors devoted entirely
to RSA and containing hardware for a full length digit multiplication ai×B, k
= 32 or 64 is the maximum practical since there must be space for registers
and for other operations such as the modular reduction. In the latest technology
wires have significant capacitance and resistance and there is a requirement from
applications as diverse as cell phones and deep space exploration for low power
circuitry. This requires a different model which is more sensitive to wire length
and for which results are only just emerging [18].

Speed is most easily obtained by using at least n multipliers to perform a
full length multiplication ai×B (or equivalent) in one clock cycle. If we were not
worried about modular reduction, the carry propagation problem could be taken
care of by pipelining this row of multipliers (Fig. 1): aibj is then computed by
the jth multiplier during the i+jth clock cycle, generating a carry which is fed
into the next multiplier, which computes aibj+1 in the next cycle.

�

�

�

�

�

�

�

�
? ? ?

? ? ?

j+1 j j−1
carry

ai

bj+1

rj+1

carry

ai

bj

rj

carry

ai

bj−1

rj−1

carry

ai

Figure 1. A Pipeline of Multipliers for R← ai×B.

Is this set-up fast enough for real-time processing? A realistic measure of
the speed required for real-time decryption is provided by an assumption that
the internal bus speed is in the order of one k-bit digit per clock cycle. If the
k-bit multiplier operates in one cycle with no internal pipelining then computing
A×B takes n cycles using n multipliers in parallel in order to compute ai×B in
one cycle. The throughput is therefore one digit per cycle for a multiplication.



C. D. Walter, Montgomery’s Multiplication Technique 5

Unfortunately, since RSA decryption requires O(nk) multiplications, we may
actually need a two dimensional array of multipliers rather than just a row of
them to perform real-time decryption.

Of course, there is an immediate trade-off between time and area. Doubling
the number of digit multipliers in an RSA co-processor allows the parallel pro-
cessing of twice as many digits and so halves the time taken. This does not con-
tradict the Area×Time2 measure being constant for non-pipelined multipliers,
although it appears to require less area than expected for the speed-up achieved.
Having two rows of digit multipliers with one row feeding into the other creates
a pipeline (now with respect to digits of A) which doubles the throughput that
the complexity rule expects. This indicates that choosing the largest r possible
for the given silicon area may not be the best policy; a pipelined multiplier or
several rows of smaller multipliers may yield better throughput for a given area.

Finally, despite a wish to use well-established multipliers, differential power
analysis (DPA) attacks on cryptographic products [13] suggest that special pur-
pose multipliers need to be designed for some RSA applications which contain
the secret keys, such as smart cards. Briefly, switching a gate consumes more
power than not doing so. Inputs for which Hamming weights are markedly more
or less than average could therefore have a power consumption with measurable
deviation from average and reveal useful information to an attacker. This is true
of today’s optimised multipliers.

4 Modular Reduction & the Classical Algorithm

The reduction of A×B to (A×B) modM can be carried out in several ways
[11]. Normally it is done through interleaving the addition of aiB with modular
reductions instead of computing the complete product first. This makes some
savings in hardware. In particular, it enables the partial product to be kept
inside an n-digit register without overflow into a second such register. Each
modular reduction involves choosing a suitable digit q and subtracting qM from
the current result. The successive choices of digit q can be pieced together to
form the integer quotient Q = b(A×B)/Mc or a closely related quantity:

Classical Modular Multiplication Algorithm:
{ Pre-condition: 0 ≤ A < rn }

R := 0 ;

For i := n-1 downto 0 do

Begin

R := r×R + ai×B ;

qi := R div M ;

R := R - qi×M ;

End

{ Post-condition: R = A×B −Q×M
and, consequently, R ≡ (A×B) modM }



6 Proc. CHES 99, LNCS vol. 1717, pp. 80-93, Springer, 1999

If we define Ai =
∑n−1

j=i ajr
j−i so that Ai = rAi+1+ai and use similar notation

for Qi then it is easy to prove by induction that at the end of the ith iteration
R = Ai×B −Qi×M . Hence the post-condition holds.

Brickell [5] observes that R divM need only be approximated using the top
bits of R and M in order to keep R bounded above. In particular [24], suppose
that M is the approximation to M given by setting all but the k+3 most sig-
nificant bits of M to zero, and that M ′ is obtained from M by incrementing its
k+3rd bit by 1. Then M ≤ M < M ′ ≤ (1+2−2r−1)M . Assume R is given sim-
ilarly by setting the same less significant bits to zero and that the redundancy
in the representation of R is small enough for R < R+M to hold. The approx-
imation to qi which is used is defined by the integer quotient qi = bR/M ′c.
Then

qi = bR/M ′c ≤ bR/Mc = qi
≤ 1 +R/M ≤ 1 + (1+2−2r−1)R/M ′ ≤ 1 + (1+2−2r−1)(qi + 1)

so that qi−qi ≤ 1 + (1+2−2r−1)−1 + qi(1+4r)−1 from which, at the end of the

loop, R < (1+qi−qi)M < 2M+(1+4r)−1qiM . Assume the (possibly redundant)
digits ai are bounded above by a. We will establish inductively that

R < 3M + a(1+3r)−1B

at each end of every iteration of the loop. Using the bound on the initial value of
R in the loop yields qiM ≤ rR+aB < 3rM+a(1+r(1+3r)−1)B so that, from the
above, the value for R at the end of the loop satisfies R < 2M+(1+4r)−1(3rM+
a(1+r(1+3r)−1)B) < 3M + a(1+3r)−1B, as desired. Naturally, more bits for a
better approximation to qi will yield a lower bound on R, whilst fewer will yield
a worse bound or even divergence.

The output from such a multiplication can be fed back in as an argument to
a further such multiplication without any further adjustment by a multiple of
M providing the bound on R does not grow too much. Assuming, reasonably,
that redundancy in A is bounded by a ≤ 2r we obtain R < 3M+ 2

3B from which
i) if B ≥ 9M then B is an upper bound for successive modular multiplications
and indeed the bound decreases towards a limit of 9M , and ii) if 9M is an upper
bound for the input it is also an upper bound for the output. Hence only a small
number of extra subtractions at the end of the exponentiation yields M as a
final upper bound.

There are no communication or timing problems when there is just one mul-
tiplier. So, for the rest of this article, we will assume that the hardware for the
algorithm consists of an array of cells, each one for computing a digit of R, and
so each containing two multipliers. The main difficulty is that qi needs to be
computed before any progress can be made on the partial product R. Scaling
M to make its leading two digits 10r makes the computation easier [25],[27], as
does shifting B downwards to remove the dependency on B. However, qi still has
to be broadcast simultaneously to every digit position (Fig. 2) and redundancy
has to be employed in R so that digit operations can be performed in paral-
lel [5], [27]. These severe drawbacks make Montgomery’s algorithm for modular
multiplication appear more attractive.



C. D. Walter, Montgomery’s Multiplication Technique 7

�

�

�

�

�

�

�

�
? ? ? ? ? ? ? ? ? ? ? ?

j+1 j j−1

bj+1 bj bj−1mj+1 mj mj−1

rj+1,c

rj+1,s

rj,c

rj,s

rj−1,c

rj−1,s

rj−2,c

rj−3,s

@
@
�
�

@
@
�
��rj,c rj−2,c

-
-

ai
qi

Figure 2. Classical Algorithm with Shift Up, Carries and Digit Broadcasting

5 Montgomery’s Algorithm

Peter Montgomery [17] has shown how to reverse the above algorithm so that
carry propagation is away from the crucial bits, redundancy is avoided and si-
multaneous broadcasting of digits is no longer required. This noticeably reduces
silicon area and shortens the critical path. Although the complexities of the
two algorithms seem to be identical in time and space, the constants for Mont-
gomery’s version are better in practice. Montgomery uses the least significant
digit of an accumulating product R to determine a multiple of M to add rather
than subtract. He chooses multiplier digits in the opposite order, from least to
most significant and shifts down instead of up on each iteration:

Montgomery’s Modular Multiplication Algorithm:
{ Pre-condition: 0 ≤ A < rn }

R := 0 ;

For i := 0 to n-1 do

Begin

R := R + ai×B ;

qi := (-r0m0
-1) mod r ;

R := (R + qi×M) div r ;

{ Invariant: 0 ≤ R < M+B }
End

{ Post-condition: Rrn = A×B +Q×M
and, consequently, R ≡ (A×B×r−n) modM }

Here m0
−1 is a residue mod r satisfying m0×m0

−1 ≡ 1 mod r. Since r is a power
of 2 and M is odd (because it is a product of two large primes) r and M are co-
prime, which is enough to guarantee the existence of m0

−1. The digit qi is chosen
so that the expression R+qi×M is exactly divisible by r. Its lowest digit is clearly
0. If we define Ai =

∑i
j=0 ajr

j and Qi analogously then Ai = Ai−1+air
i and



8 Proc. CHES 99, LNCS vol. 1717, pp. 80-93, Springer, 1999

An = A. The value of R at the end of the iteration whose control variable has
value i is easily shown by induction to satisfy Rri+1 = Ai×B +Qi×M because
the division is exact. Hence the post-condition holds. The digits of A are required
in ascending order. Thus, they can be converted on-line into a non-redundant
form and so we may assume ai ≤ r−1. This enables the loop invariant bounds
to be established by induction.

The extra power of r factor in the output R is easily cleared up by minor
pre- and post-processing [6]. The easiest way to explain this is to associate with
every number its Montgomery class modM , namely

A ≡ Arn modM

and to use × to denote the Montgomery modular multiplication. The Mont-
gomery product of A and B is A×B ≡ AB r−n ≡ ABrn ≡ AB modM . So
applying Montgomery multiplication to A in an exponentiation algorithm is go-
ing to produce Ae rather than (A)e. Introduction of the initial power of r to
obtain A is performed using the precomputed value

R2 = rn ≡ r2n modM

and a Montgomery multiplication thus [7]: A×R2 ≡ Arn ≡ A modM . Removal
of the final extra power of r is also performed by a Montgomery multiplication:
Ae× 1 ≡ Ae modM .

Throughout the exponentiation, an output from one multiplication is used
as an input to a subsequent multiplication. Without care the outputs will slowly
increase in size. However, suppose an−1 = 0. Then the bound R < M+B at
the end of the second last loop iteration is reduced to M+r−1B on the final
round, which prevents unbounded growth when outputs are used as inputs. In
particular, if the second argument satisfies B < 2M then the output also satisfies
R < 2M . Thus, suppose 2rM < rn. It is reasonable to assume that A and R2

are less than 2M , even less than M , so that their topmost digits are both zero.
Then the scaling of A to A by Montgomery multiplication yields A < 2M and
this bound is maintained as far as the final output Ae. So only a single extra
subtraction of M may be necessary at the very end to obtain a least non-negative
residues.

However, when all the I/O is bounded by 2M , an interesting and useful
observation about the output R of the final multiplication Ae× 1 ≡ Ae modM
can be derived from the post-condition of the modular multiplication, namely
Rrn = Ae + QM . Q has a maximum value of rn−1. Hence, Ae < 2M would
lead to the output satisfying Rrn < (rn+1)M and so to R ≤ M , whilst a
sub-maximal value for Q immediately yields R < M in the same way. Hence
a final subtraction is only necessary when R = M , i.e. when Ae ≡ 0 modM ,
that is, for A ≡ 0 modM . It is entirely reasonable to assume that this never
occurs in the use of the RSA cryptosystem as it would require starting with
A = M , whereas invariably the initial value should be less than M . Moreover,
each modular multiplication in the exponentiation would also have to return M
rather than 0 to prevent all subsequent operands becoming 0. Hence the final
subtraction need never occur after the final re-scaling of an exponentiation.



C. D. Walter, Montgomery’s Multiplication Technique 9

Computation of qi is a potential bottleneck here. Simplification may be
achieved in the same two ways that applied to the classical algorithm above:
this time scale M to make m0 = −1 and shift B up so that b0 = 0. These
would make qi = r0, avoiding any computation at all. We consider the shift first,
supposing initially that B < 2M . If the shift B ← rB is added to the start of
the multiplication code, then the loop invariant becomes R < M+rB. Hence
we require the top two digits of A to be zero in order for the bound on R to
be reduced first to M+B and then to M+r−1B, so that R < 2M is output. If
we always have A < 2M then this is achieved if 2r2M fits into the hardware
registers of n digits. The cost of this shift is hidden by the definition of n. The
shift can be hardwired and counted as free, as can a balancing adjustment of the
output through a higher power of r in R2. However, there is an extra iteration
of the loop: before we had one more iteration than digits in M , now we have two
more. Fortunately, the cost of one more iteration per multiplication is low com-
pared with the delay on every iteration which computing qi may cause. Apart
from the extra storage cost of the scaled number, scaling M has a similar cost,
namely one more iteration per multiplication: M is replaced by (r−m0

−1)M ,
which increases its number of digits by 1 [26]. However, at the end of the expo-
nentiation, the original M also needs to be loaded into the hardware and some
extra subtractions of M may be necessary to reduce the output from a bound
of 2rM .

6 Digit-Parallel and Digit-Serial Implementations

To overcome the problems of carry propagation in the classical algorithm, re-
dundancy and extra hardware for digit broadcasting were required. Here, too,
the same methods enable parallel digit processing. Indeed, if the shift direction
were reversed, the diagram of Fig. 2 would cover Montgomery’s algorithm also.

For both algorithms, define the ith value of R, written R(i) =
∑n−1

j=0 r
(i)
j rj ,

to be the value immediately before the shift is performed. This is calculated at
time 2i in the parallel digit implementations, with qi computed and broadcast
at time 2i+1, say. The jth cell operates on the jth digits, transforming the i−1st
value of R into the ith value. A common view of this process is:

r
(i)
j ← r

(i−1)
j±1,s + r

(i−1)
j±1−1,c + aibj ± qimj

where the choice of signs is − for the classical algorithm and + for Montgomery’s.
(The input values of R on the right are partitioned into save and carry/borrow
parts.)

A restriction to only nearest neighbour communication is desirable because
of the delays and wiring associated with global movement of data. For Mont-
gomery’s algorithm, a systolic array makes this possible [26]. In this, the cells

are transformed into a pipeline in which the jth cell computes r
(i)
j at time 2i+j

(Fig. 3). The input r
(i−1)
j+1 is calculated on the preceding cycle by cell j+1 and

a carry c
(i)
j−1 from r

(i)
j−1 is computed in cell j−1, also in that cycle. This means



10 Proc. CHES 99, LNCS vol. 1717, pp. 80-93, Springer, 1999

that carries can be propagated and so the cell function can become:

r
(i)
j + rc

(i)
j ← r

(i−1)
j+1 + c

(i)
j−1 + aibj + qimj

where the digits r
(i)
j are now in the standard, non-redundant range 0 .. r−1. (The

different notation for the carries recognises that they do not form part of the
value of R(i), unlike in the carry-save view.) If the digit qi is produced at time 2i
in cell 0, it can be pipelined and received from cell j−1 at time 2i+j−1 ready for
the calculation. This pipeline can be extended to part or all of a 2-dimensional
array with n rows which computes iterations of the loop in successive rows.

�

�

�

�

�

�

�

�

�

-

�

-

�

-

�

-

? ? ? ? ? ?

j+1 j j−1

mj bj

ai ai

qi qi

ri−1j+1 rij

cij cij−1

Figure 3. Pipelined Montgomery Multiplication: I/O for cell j at time 2i+j.

The lowest cell, cell 0, computes only the quotient digit qi. Digits of index 0
are always discarded by the shift down and so do not need computing; the lowest

digit of the final output is shifted down from index 1. We have qi = −(r
(i−1)
1 +

ai×b0)m0
−1 mod r. This can indeed be calculated at time 2i because its only

timed input r
(i−1)
1 is computed at time 2i−1. Observe that pre-computation

of b0×m0
−1 reduces the computation of qi to a single digit multiplication and

an addition, giving lower complexity for cell 0 than for the other cells. Hence,
computing qi no longer holds up the multiplication. Instead, the critical path
lies in the repeated, standard cell.

The communication infrastructure is less here than for the parallel digit op-
erations illustrated in Fig. 2. Although the number of bits transmitted is almost
the same in both cases and is independent of n, the parallel digit set-up requires
an additional O(logn) depth network of multiplexers to distribute the digit qi.
Here the inputs and output are consumed, resp. generated, at a rate of one digit
every other cycle for A and R, and one digit every cycle in the case of B. Unlike
the parallel digit model, this is very convenient for external communication over
the bus, reducing the need for buffering or increased bandwidth.

When one multiplication has completed, another one can start without any
pause. However, the opposing directions of carry propagation and shift mean
that each cell is idle on alternate cycles. Thus, full use of the hardware requires
two modular multiplications to be processed in parallel. The normal square and



C. D. Walter, Montgomery’s Multiplication Technique 11

multiply algorithm for exponentiation can be programmed to compute squares
nose-to-tail starting loop iterations on the even cycles and interleave any nec-
essary multiplications to start on the odd cycles. This enables an average 75%
take-up of the processing power, but has some overhead in storage and switching
between the two concurrent multiplications. Overall, with this added complex-
ity, the classical, parallel digit, linear array might be faster for small n, but for
larger n and/or smaller r the broadcasting problem for qi means that a pipelined
implementation of Montgomery’s algorithm should be faster.

In [14] Peter Kornerup modified this arrangement, pairing or grouping digits
in order to reduce the waiting gap. In effect he alters the angle of the timing
front in the data dependency graph and, in the case he illustrates, he uses half
the number of cells with twice the computing power. This can be advantageous
in some circumstances.

An idea of the current speed of such array implementations is given in Blum
and Paar [1] and amongst those actually constructed is one by Vuillemin et al.
[22]

7 Data Integrity

Correct functioning is important not only for critical applications but as a protec-
tion against, for example, attacks on RSA signature schemes through single fault
analysis [2]. Moreover, it is difficult and expensive to check all gate combinations
for faults at fabrication time because of the time need to load sufficiently many
different moduli [29] and, when smart cards are involved, a low unit price may
only be possible by using tests which occasionally allow sub-standard products
through to the market.

However, run-time checker functions are possible. These can operate in a sim-
ilar way to those for multiplication in current chips. For example, results there
are checked mod 3 and mod 5 in one case [8]. Here the cost of a similar check
is minimal compared to that of the total hardware. The key observation is that
the output from the modular multiplication algorithm satisfies an arithmetic
equation:

R = A×B −Q×M or Rrn = A×B +Q×M

These are easily checked modm for some suitable m by accumulating partial
results for both sides on a digit-by-digit basis as the digits become available. A
particularly good choice for m is a prime just above the maximum cell output
value, but smaller m prime to r are also reasonable. The hardware complexity
for this is then equivalent to about one cell in the linear array and so the cost is
close to that of increasing n by 1.

If a discrepancy is found by the checker function, the computation can be
aborted or re-computed by a different route. For example, to avoid the problem,
M might be replaced by dM for a digit d prime to r and combined as necessary
with some extra subtractions of the original M at the end.



12 Proc. CHES 99, LNCS vol. 1717, pp. 80-93, Springer, 1999

8 Timing and Power Attacks

The literature contains descriptions of a number of attacks on the RSA cryp-
tosystem which use timing or power information from hardware implementations
which contain secret keys [12], [13]. Experience of implementing both the classical
and Montgomery algorithms for modular multiplication suggests that most opti-
misation techniques which work with one also apply to the other. This suggests
that attacks which succeed on well-designed implementations of the classical al-
gorithm will have equivalents which apply to implementations of Montgomery’s
algorithm.

However, an important difference arises when the pipelined linear array is
used since, judging from the data dependency graph, there seems to be no equiv-
alent for the classical algorithm. With parallel digit processing of the multipli-
cation A×B modM , the same digits of A and Q are used in every digit slice,
opening up the possibility of extracting information about both by averaging
the power consumption over all cells. However, during the related Montgomery
multiplication in a pipelined array, many digits of A and Q are being used si-
multaneously for forming digit products. This should make identification of the
individual digits much more difficult, and certainly increases the difficulty of any
analysis.

9 Conclusion

We have reviewed and compared the main bottlenecks which may arise in hard-
ware for implementing the RSA cryptosystem using both the classical algorithm
for modular multiplication and Montgomery’s version, and shown how these are
solved. The hardware still suffers from broadcasting problems with the classical
algorithm and scheduling complications with Montgomery’s. However, as far as
implementation attacks using power analysis are concerned, the pipelined array
for the latter seems to offer considerable advantages over any other implemen-
tations.

References

1. T. Blum & C. Paar, “Montgomery Modular Exponentiation on Reconfigurable Hard-
ware”, Proc. 14th IEEE Symp. on Computer Arithmetic, Adelaide, 14-16 April 1999,
IEEE Press (1999) 70-77

2. D. Boneh, R. DeMillo & R. Lipton, “On the Importance of Checking Cryptographic
Protocols for Faults”, Eurocrypt ’97, Lecture Notes in Computer Science, vol. 1233,
Springer-Verlag (1997) 37-51

3. R. P. Brent & H. T. Kung, “The Area-Time Complexity of Binary Multiplication”,
J. ACM 28 (1981) 521-534

4. R. P. Brent & H. T. Kung, “A Regular Layout for Parallel Adders”, IEEE Trans.
Comp. C-31 no. 3 (March 1982) 260-264



C. D. Walter, Montgomery’s Multiplication Technique 13

5. E. F. Brickell, “A Fast Modular Multiplication Algorithm with Application to Two
Key Cryptography”, Advances in Cryptology - CRYPTO ’82, Chaum et al. (eds.),
New York, Plenum (1983) 51-60

6. S. E. Eldridge, “A Faster Modular Multiplication Algorithm”, Intern. J. Computer
Math. 40 (1991) 63-68

7. S. E. Eldridge & C. D. Walter, “Hardware Implementation of Montgomery’s Mod-
ular Multiplication Algorithm”, IEEE Trans. Comp. 42 (1993) 693-699

8. G. Gerwig & M. Kroener, “Floating Point Unit in Standard Cell Design with 116
bit Wide Dataflow”, Proc. 14th IEEE Symp. on Computer Arithmetic, Adelaide,
14-16 April 1999, IEEE Press (1999) 266-273

9. D. E. Knuth, The Art of Computer Programming, vol. 2, Seminumerical Algorithms,
2nd Edition, Addison-Wesley (1981) 441-466

10. N. Koblitz, A Course in Number Theory and Cryptography, Graduate Texts in
Mathematics 114, Springer-Verlag (1987)

11. . K. Ko, T. Acar & B. S. Kaliski, “Analyzing and Comparing Montgomery Multi-
plication Algorithms”, IEEE Micro 16 no. 3 (June 1996) 26-33

12. P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems”, Advances in Cryptology, Proc Crypto 96, Lecture Notes in
Computer Science 1109, N. Koblitz editor, Springer-Verlag (1996) 104-113

13. P. Kocher, J. Jaffe & B. Jun, Introduction to Differential Power Analysis and
Related Attacks at www.cryptography.com/dpa

14. P. Kornerup, “A Systolic, Linear-Array Multiplier for a Class of Right-Shift Algo-
rithms”, IEEE Trans. Comp. 43 no. 8 (1994) 892-898

15. W. K. Luk & J. E. Vuillemin, “Recursive Implementation of Optimal Time VLSI
Integer Multipliers”, VLSI ’83, F. Anceau & E.J. Aas (eds.), Elsevier Science (1983)
155-168

16. K. Mehlhorn & F. P. Preparata, “Area-Time Optimal VLSI Integer Multiplier with
Minimum Computation Time”, Information & Control 58 (1983) 137-156

17. P. L. Montgomery, “Modular Multiplication without Trial Division”, Math. Com-
putation 44 (1985) 519-521

18. S. F. Obermann, H. Al-Twaijry & M. J. Flynn, “The SNAP Project: Design of
Floating Point Arithmetic Units”, Proc. 13th IEEE Symp. on Computer Arith.,
Asilomar, CA, USA, 6-9 July 1997, IEEE Press (1997) 156-165

19. F. P. Preparata & J. Vuillemin, “Area-Time Optimal VLSI Networks for computing
Integer Multiplication and Discrete Fourier Transform”, Proc. ICALP, Haifa, Israel,
1981, 29-40

20. R. L. Rivest, A. Shamir & L. Adleman, “A Method for obtaining Digital Signatures
and Public-Key Cryptosystems”, Comm. ACM 21 (1978) 120-126

21. A. van Someren & C. Attack, The ARM RISC Chip: a programmer’s guide,
Addison-Wesley (1993)

22. J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati & P. Boucard, “Pro-
grammable active memories: Reconfigurable systems come of age”, IEEE Trans. on
VLSI Systems 5 no. 2 (June 1997) 211-217

23. C. S. Wallace, “A Suggestion for a Fast Multiplier”, IEEE Trans. Electronic Com-
puters EC-13 no. 2 (Feb. 1964) 14-17

24. C. D. Walter, “Fast Modular Multiplication using 2-Power Radix”, Intern. J. Com-
puter Maths. 39 (1991) 21-28

25. C. D. Walter, “Faster Modular Multiplication by Operand Scaling”, Advances in
Cryptology - CRYPTO ’91, J. Feigenbaum (ed.), Lecture Notes in Computer Science
576, Springer-Verlag (1992) 313-323



14 Proc. CHES 99, LNCS vol. 1717, pp. 80-93, Springer, 1999

26. C. D. Walter, “Systolic Modular Multiplication”, IEEE Trans. Comp. 42 (1993)
376-378

27. C. D. Walter, “Space/Time Trade-offs for Higher Radix Modular Multiplication
using Repeated Addition”, IEEE Trans. Comp. 46 (1997) 139-141

28. C. D. Walter, “Exponentiation using Division Chains”, IEEE Trans. Comp. 47 no.
7 (July 1998) 757-765

29. C. D. Walter, “Moduli for Testing Implementations of the RSA Cryptosystem”,
Proc. 14th IEEE Symp. on Computer Arithmetic, Adelaide, 14-16 April 1999, IEEE
Press (1999) 78-85


