
Optimal Parameters for On-Line Arithmetic

Colin D. Walter

Computation Department, U.M.I.S.T.,
PO Box 88, Sackville Street, Manchester M60 1QD, U.K.

e-mail: C.Walter@umist.ac.uk

Abstract. Some general techniques are given for constructing divergent
examples for on-line arithmetic operations whose parameters are chosen
beyond the optimal ones which converge. They are applied in particular
to the cases of fully on-line multiplication, division and square root.

Index Terms: Computer arithmetic, multiplication, division, square
root, on-line algorithms, redundant number systems, recurrence rela-
tions.

1 Introduction

The choice of best parameters in hardware algorithms often depends on the
use of continuous mathematics to deduce limiting situations, whereas parame-
ters which must fail can be deduced by the application of information theoretic
methods. With algorithms that gain speed by performing only partial or ap-
proximate calculations at each step there is usually a gap between such sets
of parameters, where behaviour is unknown. The discrete nature of hardware
arithmetic suggests that it may be impossible for the limiting cases used in the
continuous arguments to arise in practice. This would mean that better param-
eters might be possible. Explicit counter-examples are then required to justify
rejecting some parameters choices in this gap, and more detailed, specific proofs
for accepting other choices. We develop some techniques for this, considering
the cases of fully on-line algorithms for multiplication, division and square root
where the iterative step is as simple as possible to gain speed.

Fully on-line algorithms consume all their inputs and generate all outputs
digit serially at the same rate, most significant bit first. Multiplication, division
and square root have been extensively studied in the literature, using either a
simple addition for the iterative step (see [4], [7], [8], [2], [5]), or a fuller, more
accurate computation (see [1], [6]), and sometimes with not all inputs being on-
line (see [3], [9]). However, a redundant number system must always be used to
enable digit parallel addition, and to enable some freedom in the choice of the
output digits. There is a natural, fixed time delay δ between input and output
of corresponding digits: the output digit of index j depends solely on the input
digits of index j+δ or less. Here the output digit depends on an approximation,
down to digits of index ε, of a partial remainder, which is basically the difference

2 Internat. J. of Computer Mathematics 56 (1995), pp. 11-18

between the function on the inputs so far and the output so far. The best choice
of the parameters δ and ε is to minimise them.

2 The Algorithms

Uppercase characters are used to denote real numbers and lowercase characters
to denote digits. We consider real inputs and outputs M with |M | < 1 and radix
2 representations M ≡

∑∞
t=1mt2

−t, where the digit mt lies in the redundant
signed digit set {−1, 0,+1}. At time j ≥ 0, the first j digits provide the inputs

M [j] ≡
∑j
t=1mt2

−t from which the output digit of index j−δ is formed. The
difference between the function on such inputs and the previous output yields a
scaled residual error or partial remainder, here defined by:

W [j] = 2j{X[j]×Y [j] − P [j−1−δ]}
W [j] = 2j{X[j]−Q[j−1−δ]×Y [j]}
W [j] = 2j{X[j]− S[j−1−δ]2}

for product P = X×Y , quotient Q = X/Y and square root S =
√
X. The output

digit of index j−δ is chosen to approximately minimise this if it were included
in the definition. To guarantee outputs in the interval (−1,+1) we require also
|X| < 1/2 ≤ |Y | for division and X ≥ 1/4 for square root. The partial remainder
definitions give the recurrence relations

W [j+1] = 2W [j] + yj+1X[j] + xj+1Y [j] + 2−1−jxj+1yj+1 − 21+δpj−δ
W [j+1] = 2W [j] + xj+1 − yj+1Q[j−1−δ] − 21+δqj−δY [j+1]
W [j+1] = 2W [j] + xj+1 − 22+δsj−δ×S[j−1−δ] − 21+2δ−jsj−δ

2

with initial value W [0] = 0. So the output digits are chosen close to 2−δW [j],
2−δW [j]/Y [j] and 2−1−δ/S[j−1−δ] respectively. Speed is gained by considering
just W [j]′, given by truncating all digits in W [j] after that of index ε. This is
compared with a fixed integer i (depending on the algorithm) and the output
digit rj−δ is then defined by

rj−δ = +1 if 2εW [j]′ ≥ i
0 if |2εW [j]′| < i
−1 if 2εW [j]′ ≤ −i

3 Convergence

Convergence of the algorithms depends entirely on stopping W [j] from overflow-
ing its register. It must be bounded. Define Z ≡ 0.111... to have all its digits
equal to 1. By taking representations M ≡M [j]+2−jmZ for each input and
M ≡M [j−1−δ]+21+δ−jmZ for each output and obtaining an expression for

Colin D. Walter, On-Line Arithmetic 3

W [j+k] in terms of W [j], it is possible to observe the worst case behaviour as
k →∞. In the case of multiplication,

W [j+k] = W [j] + (2k − 1)(W [j]+yX[j]+xY [j]+21+δp+2−jxyZ[k])

Take x = sY and y = sX where sM is the sign of M . Then choosing p = −1 gives
a lower bound on the maximum value of W [j+k]. So W [j+k] is only bounded
above as k →∞ if W [j] is bounded above by

U [j] = 21+δ−|X[j]|−|Y [j]|−2−j .

Similarly, for the other two algorithms, there are upper bounds

U [j] = 21+δ|Y [j]| − 1− |Q[j−1−δ]| − 21+δ−jsY sQ
U [j] = 22+δ|S[j−1−δ]|+ 22+2δ−j − 1

for j > δ in each case. Lower bounds are essentially identical with opposite signs.
These bounds are very tight in practice, and so aid in the generation of divergent
examples since, when they are exceeded, an appropriate choice of repeated digit
for the inputs will result in the partial remainder becoming arbitrarily large.
Also, an easy consequence is that the hardware register for W is bounded by
|W | < 21+δ for multiplication and division, and by |W | < 3.21+δ for square root.

Though tricky at some points, it is now possible to show by induction on
j that these bounds do hold, subject to certain restrictions which are sufficient
to make the induction step work. The base case of j = 1+δ holds because the
integral part of the output is set to 0. As an example of the induction step, take
multiplication when pj−1−δ = 0. For convenience, assume also that ε < δ. Then
W [j−1] has at most j−1 digits after the point. So W [j−1]+21−j ≤W [j−1]′+2−ε

≤ 2−εi, and

W [j] = 2W [j−1] + yjX[j−1] + xjY [j−1] + 2−jxjyj − 21+δpj−1−δ
≤ 2(2−εi−21−j) + 2
≤ 21−εi− 22−j + 4− |X[j]| − |Y [j]|

This is at most U [j] whenever 21−εi+4 ≤ 21+δ+21−j , and so the step holds for
all j > δ if

21−εi + 4 ≤ 21+δ

Similarly, the case pj−1−δ = −1 holds if

21−ε(1−i) + 4 ≤ 0

For division and square root convergence is guaranteed when

21−εi+ 4 ≤ 2δ

2−ε(1−i) + 2 ≤ 0

and
21−εi+ 2 ≤ 21+δ

21−ε(1−i) + 2 ≤ 0

hold respectively. The best choices of parameters which satisfy these have (δ, ε)
equal to (3,−1), (4,−1) and (2, 0), respectively, with i equal to 2 or 3 in each
case.

4 Internat. J. of Computer Mathematics 56 (1995), pp. 11-18

4 Stable Number Representations

Our main question now is, are these conditions necessary for convergence? It is
clear by exhaustive testing of all possible inputs that if word length is limited
some better choices for ε and δ can be found. (Just consider a word length of
one digit after the point to see that δ could then be reduced to 1 with ε = 1.)
We will not try to establish at what word length the values of δ and ε need to
be incremented, although some upper limits can be deduced from the examples
below. However, it will be shown from examples which diverge, that the values
obtained in the previous section are indeed the best ones when word length is
unbounded or unspecified.

Divergence depends on certain choices of output digit, and therefore on the
representation of the partial remainder, which in turn depends on the choice of
hardware adder used in the iterative cycle. Prediction of representations is easiest
when we have a stable representation, i.e. one that is invariant as it goes through
the adder with the other inputs being identically 0. If we consider common hard-
ware for the algorithms, then we need an adder for 3 redundant numbers, which
we now define. For convenience, assume all digit positions behave identically,
although any hardware is allowable for the un-truncated part of interest in W .
First, the addition of three corresponding digits gives a total t which generates a
sum digit (|t|mod2)×sign(t) and a carry digit (|t|div2)×sign(t). Secondly, cor-
responding sum and carry digits are added to yield a total t′. This is split in the
same way again unless both it and the next digit total down are non-zero with
the same sign, in which case the new sum digit is −t′ and the new carry is t′.
Lastly, these second sum and carry results are added to give a final digit sum in
the range [−1..+1]. This is the adder output.

Lemma 1.
i) Every number has a stable representation.
ii) A representation is stable if, and only if, it contains no pair of digits

11 or 1̄1̄.
iii) The largest stable fraction is 0.1010... = 2/3.
iv) The largest fraction none of whose stable representations has non-

zero integral part is 0.01010... = 1/3.
v) If the binary representation of V has most significant digit corre-

sponding to 2n then stable representations have most significant
digits corresponding to 2n, 2n+1 or 2n+2.

vi) A finite representation of V whose binary representation has v dig-
its becomes stable after at most v+1 passes through the adder, and
cannot grow in length except from v to v+1 digits.

Lemma 2. For the truncation function ′ and a stable representation V ,
i) If V ′ > 0 then 0 ≤ (V/2)′ ≤ V ′ ;
ii) If V ′ = (V/2)′ > 0 then V ′ ≡ 11̄×2−ε.

Colin D. Walter, On-Line Arithmetic 5

5 Values for the Partial Remainder

Assume each algorithm converges. The examples we now construct to obtain a
contradiction to this assumption employ inputs which are are close to the points
at which the induction argument above was most difficult to close, namely where
the input digits have the greatest effect, and the output digit the least effect,
on the value of the partial remainder. To obtain known output, we exploit the
fact that if some choice of output were to yield |W | < 1 then any other choice
of output would make W exceed its bounds. Hence the algorithm must make
that first choice. Moreover, by Lemma 1(vi), inputs can be chosen to force stable
representations of W .

Let = denote equality of value between two possibly different representations
and ≡ equality of representation. As above, take Z ≡ 0.111... and suppose V is
the representation of some number to be chosen later, with most significant digit
of index not above −δ and least significant digit of index v ≥ 0.

For multiplication, take

X ≡ Z[t] + 2−uV + 2−r−uZ and Y ≡ Z[t] + 2−r + 2−r−uZ

where u > t+1+2δ and r > u+v. For these inputs, if the expected value for
P [r+u−2−2δ] is chosen then |W [r+u−1−δ]| = |2−1−δV | < 1. Since any other
choice for P would exceed the convergence bounds, this must indeed be the value
for P [r+u−2−2δ]. So, if V is initially stable and not large enough to generate
earlier non-zero output digits, we obtain it as the value and representation of
W [r+u].

For division, take

X ≡ 2−1Z[t]− 2−u−1V + 2−r−uZ and Y ≡ 2−1 + 2−r − 2−r−uZ

where u > t+v+2δ and r > u+v. A similar argument shows that Q[r+t−1] =
1−2−t+ 2−uV−21−r+21−r−t, which yields W [r+t+δ] = 2t+δ−uV + 2t+1+δ−r

+ 21+δ−r. There are sufficient further iterations for the adder to turn V into
a stable form when it appears in W [r+u] = V+2u+1−r+2u+1−r−t, subject to
being sufficiently small not to generate earlier non-zero output digits.

For the square root, take

X ≡ 2−2 + 2−t + 2−2t − 2−uV + 21−u−tZ

where t > 2(v+1+δ) and u > 2t+2+2δ. As before, S[u+v] = 2−1+2−t−2−uV
must hold, giving W [u+t−1] = V+2t−u−1V 2 where the representation of V has
become stable, and we assume it is sufficiently small not to generate earlier
output digits.

In general, it is thus possible to obtain any number as the value of the partial
remainder subject to certain conditions about one or all of its stable represen-
tations not generating earlier output digits.

6 Internat. J. of Computer Mathematics 56 (1995), pp. 11-18

6 Examples of Divergence

Two values for V are now chosen to make the value of W as close as possible
to the points at which the output digit changes from 0 to +1 and from −1 to 0.
These are where the induction step was hardest to establish. In particular, for i
as in the definition of the output digit, we take

V0 = 2−ε(i−1+α)
V−1 = 2−ε(β−i)

where α and β are fractions such that V
′

0 = 2−ε(i−1) and V
′

−1 = −2−εi for the
representations of V which might turn up in W . This will guarantee the output
digits 0 and −1 respectively when desired, without 2−jV (j > 0) generating
non-zero output integers unless we obtain V ′−1 ≡ 11̄×2−ε when i = 1. With that
exception, running through the induction step argument again, we find that the
bound is not met if either of the following holds:

21−ε(i−1+α) + 4 > 2δ

21−ε(β−i) + 4 > 0

or
21−ε(i−1+α) + 4 > 2δ−1

21−ε(β−i) + 4 > 0

or
21−ε(i−1+α) + 2 > 2δ

21−ε(β−i) + 2 > 0

respectively for the three algorithms.

The best choice of α and β here would be to take them both equal to 1.
However, some separation is needed between them and the “integer” part of
V in order to ensure that the truncation function generates the right output
digit. For multiplication, the initial representation of V is stable (avoiding the
exceptional case) and, according to Lemma 1, α and β can be 1/3 or 2/3 (or
rather the first v digits of their stable binary representations) depending on
whether the integer part is odd or even respectively. Immediately, one of the
inequalities is satisfied when δ = 2, so that the multiplication algorithm must
diverge. For δ = 3, apart from the convergent cases we already know, the three
cases (ε, i) = (−3, 1), (−2, 1), or (−2, 2) are not shown to be divergent by the
above, but then divergence happens for

X ≡ Y ≡ Z[t] + 2−t−1Z = 1− 2−t−1

with t > 2.

For division, we do not know which stable representation of V will appear in
W . To guarantee the right output digits, a zero must be placed between any sta-
ble representations of the integer and fractional parts to prevent any interchange
between them. So we may only choose α and β to be 1/6 or 1/3 depending on

Colin D. Walter, On-Line Arithmetic 7

whether the integer part is odd or even respectively. Then with several excep-
tions, one of the inequalities is satisfied whenever δ ≤ 4, so that the division
algorithm must diverge. Apart from the known convergent cases, the remain-
ing undetermined exceptions are (ε, i) = (−2, 1) for δ = 3, and (ε, i) = (−4, 1),
(−3, 1), (−2, 1), or (−2, 2) for δ = 4. For these, modify the standard construction
to take

X ≡ 2−1Z[t]− 2−u−1V + 21−r−uZ

with Y as before. The best β now works for the δ = 3 case, whereas in the
other cases, taking V = 1+2−a for some a > 2 produces an excessive W after an
extra two or three iterations (or earlier in the case of the first exception). If the
exception noted in Lemma 2 arises, then Y should be modified to

Y ≡ 2−1 + 2−r−1 − 2−r−uZ

With the square root, the same choice of α and β is made as similar circum-
stances arise to those of division. With a few exceptions, one of the inequalities is
then satisfied whenever δ ≤ 2, so that the division algorithm must diverge. Other
than the known convergent cases, the exceptions are (ε, i) = (−1, 1) for δ = 1,
and (ε, i) = (−2, 1), (−1, 1) or (−1, 2) for δ = 3. For both the cases (−1, 1) the
usual inequality will hold by choosing V ≡ 1̄+2−a, with a not too small, unless
the Lemma 2 exception arises, in which case V ≡ 1̄0+2−a will work. For the last
case, (−1, 2), consider W [u+3] when

X ≡ 2−2 + 2−t + 2−2t − 2−u + 2−1−uZ

for t and u > 2t large enough, say t = 6 and u = 27. The most interesting
case is the second one, (−2, 1), where all 15 digit inputs except one are cal-
culated properly. The unique exception is X ≡ 0.010101̄01̄1̄1̄1̄1̄1̄1̄1̄+2−15Z for
which the first incorrect digit has index 22. Divergence becomes guaranteed
since W [25] > U [25]. Thus, this set of parameters is acceptable for all inputs up
to at least 15 and perhaps up to as many as 21 digits.

7 Conclusion

We have investigated the optimality of the best parameters generated by analytic
arguments for some on-line algorithms, and given techniques and general con-
structions for examples of divergence for other parameter choices. This shows the
analytic results are indeed optimal. However, for the square root algorithm this
is only just the case. Indeed, for limited precision square root better parameters
can be chosen. Moreover, there seems no theoretical barrier to the existence of
on-line functions for which the analytic results provide only strictly suboptimal
parameters.

Two final remarks: shifting of difficult inputs can allow improved parameters,
and, although the proofs become more complex, all the results hold when the
inputs lie in the closure of the (half-open) intervals on which they are usually
defined.

8 Internat. J. of Computer Mathematics 56 (1995), pp. 11-18

References

[1] Jean Duprat, Yvan Herreros & Jean-Michel Muller, “Some results about on-line
computation of functions”, Proc. 9th Symposium on Computer Arithmetic, Santa
Monica CA, 6-8 Sept ’89, IEEE Comp. Soc. Press, 1989, pp. 112-118.

[2] Milos D. Ercegovac, “An On-Line Square Rooting Algorithm”, Proc. 4th IEEE
Symposium on Computer Arithmetic, Santa Monica, CA, 1978, pp. 183-189.

[3] Milos D. Ercegovac & Tomas Lang, “Implementation of Module combining Multi-
plication, Division and Square Root”, Proc. IEEE Intern. Symp. on Circuits and
Systems, 1989, pp. 150-153.

[4] Milos D. Ercegovac & Tomas Lang, “On-Line Arithmetic: A Design Methodology
and Applications in Digital Signal Processing”, VLSI Signal Processing III, R. W.
Brodersen, H. S. Moscovitz eds., IEEE Press, New York, 1988, pp. 252-263.

[5] V. G. Oklobdzija & Milos D. Ercegovac, “An On-Line Square Root Algorithm”,
IEEE Trans. Comput., vol. C-31, Jan. 1982, pp. 70-75.

[6] H. J. Sips & H. X. Lin, “ A New Model for On-Line Arithmetic with an Application
to the Reciprocal Calculation”, J. Parallel & Distrib. Comp. vol. 8, 1990, pp. 218-
230.

[7] Kishor S. Trivedi & Milos D. Ercegovac, “On-Line Algorithms for Division and
Multiplication”, IEEE Trans. Comput., vol. C-26, No 7, July 1977, pp. 681-687.

[8] Paul K.-G. Tu & Milos D. Ercegovac, “Design of On-Line Division Unit”, Proc.
9th Symposium on Computer Arithmetic, Santa Monica CA, 6-8 Sept ’89, IEEE
Comp. Soc. Press, 1989.

[9] J. H. Zurawski & J. B. Gosling, “Design of a high-speed square root, multiply and
divide unit”, IEEE Trans. Comput., vol. C-36, 1987, pp. 13-23.

