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Abstract. There are a number of techniques known for speeding up
modular multiplication, which is the main arithmetic operation in RSA
cryptography. This note shows how to gain speed by scaling the modulus.
Resulting hardware is limited only by the speed of addition1. Detailed
analysis of fan out shows that over existing methods the speedup is po-
tentially as much as two-fold. This is because the addition and fan out
can now be done in parallel. Of course, in RSA the modulus can be chosen
to need no scaling, so that most of the minor extra costs are eliminated.
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1 Introduction

One of the motivations for studying fast modular multiplication is its use in
cryptography, including the RSA algorithm [5]. That algorithm provides po-
tentially the most widely useful system as it appears to be arbitrarily secure.
However, its arithmetic intensity requires dedicated hardware if it is to be used
in a real-time system working with bulk data.

A number of techniques are already known for improving the speed of hard-
ware for modular multiplication of integers. These are surveyed in, for example,
Eldridge & Walter [3]. Most can be combined without difficulty with the mod-
ification suggested here, and so our contribution is presented in terms of the
essential, basic techniques described by Brickell [2]. Fundamental there is the
use of a truncated partial product and truncated modulus to determine, with
sufficient accuracy, the correct multiple of the modulus to subtract during each
of the repeated addition cycles that perform the multiplication. This had been
used for some time in the case of real number division, being reported on by, for
example, Atkins [1] and Taylor [6] in cases of number representations with radix

1 J.-J. Quisquater informed me at the conference that he had spoken on a similar
technique for software in the rump session at Eurocrypt ’90, but nothing appears
in the Proceedings.
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greater than 2. In a recent paper [4], Ercegovac and Lang show how improve
this technique for division by scaling both numerator and divisor by the same
amount in order to obtain known, fixed, most significant digits for the divisor.
With these digits known, the hardware logic for deciding the multiple of the divi-
sor to subtract is much simpler. So the clock may be run faster and the quotient
obtained more quickly. A similar procedure works for modular multiplication by
scaling the modulus, and we present the details for this here.

As in the case of division, the speed-up consequent from this technique derives
from the reduced complexity of the hardware logic for deciding the multiple of
the divisor to subtract from the dividend. Analysis by Eldridge and Walter in
[3] of logic for the usual modular multiplication algorithm shows that, as with
division (see [6]), this complexity normally determines the critical path length
in the hardware, and so the clock speed and overall time.

The overheads entailed by employing the technique here are minimal. Ini-
tially, scaling of the modulus would probably be done by software. In the case of
the RSA algorithm the same modulus is used over and over again, so that scaling
done once for all is very cheap. During computation the registers need to be a
digit or so larger, which affects the chip area only marginally. Also one or two
more iterations of the main loop need to be done. This hardly affects the time
at all. After the loop, the result may be too large and a few extra subtractions
of the original modulus may be necessary. This is potentially the most expensive
overhead as the original modulus may need to be reloaded or kept in a further
register. Overall, the hardware is almost the same as before, with slightly ad-
justed parameters, except for the improved logic mentioned above. The gain in
efficiency against the minor overheads is worked out in detail in this paper, with
encouraging results.

2 Overview of the Algorithm

We begin by noting that fast modular multiplication is usually done by repeated
cycles involving shifting and addition, as in ordinary multiplication, together
with a simultaneous modular subtraction. Thus, each cycle also needs to predict
the multiple of the modulus to subtract in the next cycle.

Suppose we represent numbers with radix r. If we wish to calculate the
residue R of (A×B) mod M , or indeed the integer quotient Q = (A×B) div M ,
then, with some detail yet to be explained, the basis of the algorithm in [2] is
the following:
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Type Index = 0..MaxIndex ;

Register = Array[Index] of Digit ;

Procedure ModMult( A,B,M : Register ; Var R,Q : Register ) ;

{ Pre-Conditions : Mmin ≤M ≤Mmax and A,B ≥ 0 }

{ Post-Conditions: A×B = Q×M + R and Top(R) ≤ L }

Var J : Index ;

Function Quotient(ToprR,TopM : Int) : Digit ;

{ Post-Condition : Quotient ≈ (ToprR) div TopM }

Begin ... End ;

Begin { ModMult }

R := 0 ; Q := 0 ;

For J := MaxIndex DownTo 0 do

Begin { Loop Invariant: Top(R) ≤ L and R ≥ 0 }

Q[J] := Quotient(Top(r*R),Top(M)) ;

R := r*R + A[J]*B - Q[J]*M ;

End ;

End ; { ModMult }

It is fairly straightforward to see that the output satisfies A×B = Q×M + R.
For speed, the quotient digits are generated by only considering the topmost
digits of the partial product R and the modulus M . These are extracted by the
function Top, which truncates a fixed number (usually most) of the lowest digits.
By allowing the digits of Q to lie in a sufficiently wide range, the accumulating
partial product can be kept fairly small, being bounded through some fixed L.
Appropriate choices make R less than 2M , but not necessarily less than M . So
the final output may fail to be the least non-negative residue of A×B modulo
M , but it is easy to subtract an extra M to obtain (A×B) mod M , if necessary.
The precise conditions required for undefined constants such as L are given in
[7]. Such detail is not needed here, although we look at L in section 4.

3 Scaling the Modulus

Let q be the number of the most significant digits of the modulus M which the
function Quotient needs and suppose M has a standard, non-redundant repre-
sentation, i.e. digits in the range 0..r−1. Assume inputs are shifted as necessary
to give the modulus exactly m digits, so that the hardware function Top just
truncates the m− q least significant digits of both M and the partial product
R. We want to scale the modulus M by a factor f such that fM has its q most
significant digits fixed, say, to Mfix.
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The revised algorithm uses fM , with an appropriate shift, in place of M . One
benefit of this is that Quotient is easier to calculate because it no longer depends
on any digits of Top(M), as they are fixed. This saves minimal hardware area,
but, more importantly, shortens the cycle time of each iteration. In particular,
if Quotient is performed by doing div (Top(M)+1) and Mfix = rq−1 then the
implied integer division is by rq and can be done just by shifting. The penalties
of the technique include the pre-calculation of f and fM (which may be needed
in non-redundant form), an increase in register lengths by the number of digits
in f , and, if necessary, up to 2f final subtractions of M from the output, which
may otherwise be nearly as large as 2fM .

Let us now show how to calculate f . Suppose fM has p non-redundant digits.
Then, for the q most significant digits of fM to be Mfix, f must satisfy

Mfix ≤ rq−pfM < Mfix+1

This is equivalent to demanding that f lie in the real interval

[ rp−qMfix/M , rp−q(Mfix+1)/M [

This must be of length at least 1 in order that it always contain an integer
which can be chosen as the value of f . The condition for this is M ≤ rp−q, in
other words, fM has at least q more digits than M . Ideally, p should be picked
minimally. Thus, f could be calculated by brute force using

f = ( rm × (Mfix+1)− 1 ) div M with p = m + q (∗1)

A more efficient approach may be desirable, one which derives f from a
truncated value of M . Suppose q′ digits of M are needed to find such an f . Let
Top′ be the function that provides these. From the property rm−q

′
Top′(M) ≤M

< rm−q
′
(Top′(M)+1) we can approximate the ends of the interval above to

obtain the strict sub-interval

[ rp−qMfix / rm−q
′
Top′(M) , rp−q(Mfix+1) / rm−q

′
(Top′(M)+1) ]

This has length at least 1 precisely when

Top′(M)× ( Top′(M)+1 ) ≤ rp−m+q′−q( Top′(M)−Mfix )

By viewing this as a quadratic in Top′(M), it is most difficult to satisfy at
the extreme of the range [rq

′−1, rq
′ − 1] which is furthest from the turning

point (rp−m+q′−q − 1)/2. Unfortunately, for p = m + q it does not hold when
Top′(M) = rq

′ − 1, and so we need to increase p to p = m + q + 1. Then the
lower limit rq

′−1 is the harder to satisfy and we require

rq
′−1 × ( rq

′−1 + 1 ) ≤ rq
′+1 × ( rq

′−1 −Mfix )
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or, equivalently,

Mfix < rq
′−1 − rq

′−3 .

Since Mfix < rq, this will always hold by taking q′ = q + 2, (and usually when
q′ = q + 1). Thus a solution which yields f from only the topmost digits of M
is given by

f = (rq
′+1(Mfix+1)) div (Top′(M)+1) with p = m+q+1 and q′ = q+2 (∗2)

To summarise the results of this section, we begin by choosing a suitable
Mfix with q digits which would make computation of Quotient easy if Mfix

were given by Top applied to the modulus. Next we replace the modulus M by
fM where f is as defined in either (∗1) or (∗2). Lastly, when running the modular
multiplication algorithm with the new modulus, perform extra subtractions of
the original modulus as necessary after the main loop to obtain the least non-
negative residue. This can be done with about q + 2 shifts and subtractions of
digit multiples of the original modulus because (∗1) and (∗2) yield f ≤ rq+1 and
f ≤ rq+2 respectively in the worst cases.

4 Solutions for Radix 2

Now let us look at the saving in computational time by seeing how the hardware
is affected in the case of radix 2. Assume that M has already been replaced
by fM and shifted, so that Top(M) = Mfix. Suppose also that M is in usual
non-redundant binary form. However, let R have digits from 0..2. Speed is ob-
tained mainly by using this redundant representation in order to curtail carry
propagation to only one or two places during the addition. This enables digit
operations for addition to be carried out in parallel. One choice for Quotient
which is discussed in [7] is

Quotient(ToprR, TopM) = ToprR div (TopM+1)

A sensible choice for Mfix is therefore 2q − 1 so that div can be performed
simply by shifting. A value for q which makes the algorithm work now has to be
determined.

The loop invariant for the addition cycle must be preserved. So Top(R) ≤ L
must imply the condition

Top( 2R + A[J ]×B − (Top(2R) div 2q)×M ) ≤ L (∗3)

since the left side is the value of Top(R) for the next iteration. A scheme following
the lines of Brickell [2] computes (A×B) mod M as ((SA×B) mod SM) div S
for some shift factor S, with Top truncating appropriately more digits. Here S
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is chosen sufficiently large for the input A[J ]×B not to affect any of the thus-
redefined top digits in the value of R to which it contributes. So, that term may
be ignored. Now, looking at top digits only,

2R − (Top(2R) div 2q)×M
< ( Top(2R) + 1 )2m−q − ( Top(2R) div 2q )×(2m − 2m−q)
= {Top(2R)− 2q(Top(2R) div 2q)}×2m−q + 2m−q + (Top(2R) div 2q)×2m−q

= ( Top(2R) mod 2q )×2m−q + 2m−q + (Top(2R) div 2q)×2m−q

Applying Top to this, and noting the strictness of the inequality, ensures the
condition (∗3) is met if

Top(2R) mod 2q + Top(2R) div 2q ≤ L (∗4)

Here R may equal M . Thus Top(R) may be at least as great as Top(M) = 2q − 1.
Hence Top(2R) = 2q+1 − 1 is possible, and for this the inequality requires L ≥ 2q.
We will show that (∗4) is satisfied by taking L = 2q and q ≥ 2. So suppose
this is the value of L and that Top(R) ≤ L. As digits of R are at most 2, we
have Top(2R) ≤ 2Top(R) + 2 when the multiplication is done by shifting. Thus
Top(2R) ≤ 2L + 2 = 2q+1 + 2. The left side of (∗4) is a saw-tooth function of
Top(2R), with increasing maxima before each multiple of 2q. So (∗4) is sat-
isfied if it holds at the last value, when Top(2R) = 2q+1 + 2, and at the pre-
vious maximum, when Top(2R) = 2q+1 − 1. Both are easily seen to satisfy the
inequality if q ≥ 2, confirming the validity of the choice for L. The output conve-
niently satisfies R < 2M because Top(R) ≤ L < 2L−2 = 2Top(M) ≤ Top(2M)
and similarly Q[J ] ≤ 2 because Top(2R) div (Top(M)+1) ≤ (2L+2) div L = 2.

There are no solutions at all for q ≤ 1. Larger values of q progressively sim-
plify the hardware, but each increase by 1 costs an extra digit position in reg-
isters, an extra addition cycle, and another final subtraction of a shifted digit
multiple of the original modulus.

5 Improved Circuits for Radix 2

Now recall that hardware clock speed is limited by the longest path in the
circuit from input to output. The length of the shortest possible clock cycle
is approximately the sum of delay times associated with the gates on such a
path. This in turn is roughly proportional to the number of such gates. In [3],
Figure 2, there is a circuit for implementing the software addition cycle with a
delay carry adder. This uses the same redundant number system assumed at the
start of the previous section to allow parallel digit operations. Generating the
new value for R as well as the Quotient digit for the next iteration results in a
critical path length of 11 xor gates compared with the 6 needed for calculating
a typical output digit. However, like the clock signals, the Quotient digit needs
to be broadcast subsequently to each place in the adder. We will assume the
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technology requires a tree 5 gates deep to do this for a 512 to 1024 bit modulus.
Then the correct multiple of M can be selected ready for the next iteration
using two more gates. If we preferentially broadcast to the topmost inputs first
(2 gates) then the path length at the top end is actually 11+2+2 = 15 gates,
whilst that for a typical output digit is 6+5+2 = 13 gates.

If the Quotient digit were to be computed earlier, then the fanning out of
this information could be overlapped with the current addition to reduce the
critical path length closer to the theoretical minimum of 6, which is the number
of gates for finding a typical output digit in the adder. We now show how scaling
the modulus makes this possible.

Suppose we take q ≥ 2. Then the most significant digit of R has index at most
m because R < 2M . Indeed, if a suffix i denotes the digit coefficient of 2i in a
number representation, then Rm = 0 or 1. This bound on R determines the size
of registers as needing m+1 digits. So the subtraction of QJ×M might be imple-
mented here by adding QJ times the complement (2m+1−1)−M together with
an initial carry QJ at the bottom end and ignoring an overflow of QJ×2m+1.
Call this input M∗, and assume that the inherent non-zero digit multiples are
obtained by shifting so that its digits are bits. Then, because Mfix = 2q − 1
gives Mm = 0 and Mi = 1 for m−1 ≥ i ≥ m−q, the topmost digits of M∗ sat-
isfy M∗m = 0 or 1, and M∗i = 0 for m−1 ≥ i > m−q. The initial carry does not
propagate up the adder more than a couple of places, and so it does not affect
the top digits. Finally, QJ has the simple formula 2Rm + Rm−1.

Now take q = 4. The top end of the delay carry adder simplifies to the typical
bit slice illustrated in Figure 1 because the most significant digits of input AJ×B
are 0. Using the various bit values just described, consequent simplifications to
the bit slice yield most of the top end of Figure 1. However, once R is computed,
part of the next addition cycle can be performed on its topmost digits to convert
them nearer to non-redundant form. This is illustrated in that part of the figure
below the dotted line which marks the end of one iteration of the software
algorithm proved above. Enough has been done there to remove the possibility
that Rm−4 = 2, i.e. (2R)m−3 = 2, which explains the other simplification to the
input.

The advantage of starting part of the next iteration is that the quotient
digit can be calculated earlier in the cycle. Here it appears after a maximum of 3
gates, rather than the 11 noted above: a substantial reduction. Since it is actually
computed earlier than a typical digit output from lower down the adder, it is
clearly possible after further modifications to fan out this information in parallel
with the addition rather than sequentially after it, thereby reducing the critical
path length to that of the adder (6 here). This requires a lot of the top digit
calculations to be considerably advanced, but it would enable chips using scaling
to run at about double the speed of others with the only significant cost being
an extra register to hold M∗. To build such a circuit is just tedious development
and we omit the details.
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Finally, we consider how to add surrounding detail to Figure 1 without trying
to advance the quotient digit computations still further. If all the topmost input
bits needed for calculating the quotient digit are already in position at the start
of a clock cycle, then generating the same inputs for the next cycle requires 3
gates for the quotient digit, 2 for fanning it out and 2 for selecting digits for
M∗: a total of 7. Let us use 5 gates to completely disseminate the new quotient
digit to all digit positions. So this makes a total depth of 3+5 = 8 gates at the
top end. The main part of a 512- to 1024-bit adder then just needs a depth of 2
gates for selecting M∗ as well as the 6 gates of the adder itself. This makes the
critical path length just 8, compared to 15 without modulus scaling. Counting 2
gates as the equivalent of the set-up and hold times for registers, the hardware
presented here should be able to be run at about (15+2)/(8+2) times the speed
of comparable hardware without a scaled modulus, i.e. 70% faster.

∨ ∧ ⊕ ∨ ∧ ⊕ ∨ ∧ ⊕ ∨ ∧ ⊕
∧ ⊕ ∨ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕
∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕

∧ ⊕ ∧ ⊕ ∧ ⊕

(2R)m=1(2R)m−1=2 (2R)m−2=1 (2R)1=2 (2R)1=1
M∗

m=1 (2R)m−1=1 M∗
1 =1

(2R)m−2=2

Input M∗ and 2R
(R shifted 1 place)

Overflows

QJ+1=1

QJ+1=2 Rm=1 Rm−1=1 Rm−2=1 Rm−3=1 Rm−5=2

Rm−1=2 Rm−2=2 Rm−3=2 Rm−4=2 Rm−5=1

R1=2 R1=1

Typical Bit
Slice

at top end
Output next R

Edge of
S/W cycle

Fig. 1. Adder for radix 2 when q = 4 and Mfix = 15

6 Final Detail and Conclusions

We have shown how to scale the modulus for modular multiplication to poten-
tially double the speed of hardware, giving sufficient detail to achieve a speedup
factor of 70%. The cost for radix 2 involved 4 extra bit positions in registers and
consequently 4 extra clock cycles − less than 1% in space or time for typical
RSA applications. For the full doubling of speed an extra register holding M∗ is
required. Further penalties are slight. They concern pre- and post- processing.
Initial scaling is cheap when the modulus is much used as it is done once for all.
The output is bounded by 2fM , where f is the scaling factor. Hence M needs to
be loaded and subtracted as necessary. However, in RSA cryptography this does
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not need to be done until decryption, and it can be avoided entirely by choosing
a modulus which needs no scaling.
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