
Logarithmi Speed Modular Multipliation

Colin D. Walter

Department of Computation

UMIST

PO Box 88

Manhester M60 1QD, UK

www.o.umist.a.uk

Abstrat. A design for logarithmi speed modular multipliation is

given and a omparison made with the best implementations of exist-

ing, more standard algorithms by Brikell and Montgomery. A 40-fold

inrease in speed is reported by using hip area at the limit of urrent

tehnology.

Key words: Computer Arithmeti, Modular Multipliation, RSA ryp-

tography.

1 Introdution

Most modular multipliation algorithms in urrent use perform their arithmeti

on n-digit inputs in O(n logn) time and O(n) spae using what amounts to the

standard paper and penil method with a redundant representation of the num-

bers [1℄. Muh work has gone into improving the eÆieny of these algorithms

and good estimates of their speeds in terms of gate delays are now available [3℄,

[9℄.

Many ryptographi appliations, suh as deryption of RSA [5℄, require high

speed modular arithmeti on large numbers. It is presumably well understood

that modular multipliation in partiular an be performed on inputs with O(n)

digits in O(log n) time at the prie of O(n

2

) spae. Here we give details for this

and quantify upper bounds on the time and spae more preisely in order to

see if a hange of algorithm an reasonably be made to trade spae for speed

and yet remain within feasible tehnology. Pipelining the algorithm inreases

the throughput to 1 modular multipliation per O(1) lok yles, although the

lateny is still O(log n).

In a previous work [10℄ the author showed how a systoli array ould be built

for modular multipliation with a throughput of one produt per lok yle on

a very fast lok (O(1) time), also using O(n

2

) spae. However, it requires O(n)

time between the input and output of orresponding digits. Using pipelining as

noted above, the algorithm here would provide essentially the same performane



2

as the systoli array � the same throughput for the same ost in area - but the

muh lower lateny of O(log(n)) time instead of O(n).

In a related work [6℄, Shand et al. desribe a programmable array implemen-

tation of Montgomery's algorithm [4℄. The details of their implementation are

not given, but the performane would appear to be similar to that of the systoli

array [10℄ if they have the ability to pipeline a number of modular multiplia-

tions to use the hardware simultaneously. Thus the hardware here should again

provide a signi�ant advantage. Their measure of time is an absolute one using a

partiular tehnology and gives an O(n) time for lateny, an order of magnitude

slower than what is desribed here.

Upper and lower bounds on the area/time eÆieny of multipliation are

given by Brent and Kung [1℄. By employing the disrete Fourier transform, they

are able to desribe a method that would provide modular multipliation using

O(n logn) area and O(

p

n logn) time. This is intermediate in terms of both

area and time between the method here and the standard methods of [2℄ and

[3℄. With its smaller produt of Area�T ime, as well as an absolute area that

suits urrent tehnology, it is probably an over negleted alternative. It is worth

noting that minimum Area�T ime is believed to inrease as time is redued to

its asymptoti minimum, and the area here still appears to be the best for the

logarithmi time it takes [7℄.

It turns out that ryptographi appliations requiring around 500-bit num-

bers are well served by logarithmi methods as far as speed is onerned, although

not so well spae-wise as far as urrent tehnology is onerned. Without e�ort, a

40-fold inrease in speed is obtained here for a 500-fold inrease in area, resulting

in the requirement for 5�10

6

XOR gates or equivalent for a H/W implementa-

tion. Suh hardware is appropriate for heavy entralised RSA enryption and

deryption using the same key or keys ontinuously, and is just about feasible

nowadays using redundany in wafer-sale integration tehniques.

2 The Algorithm

We split the omputation of (A�B) modM into six distint phases, namely the

various funtion appliations in rnd(frat((A�B)�(1=M))�M) where frat

disards the integer part of a real number, and retains the non-negative fra-

tional part, and rnd rounds a real to the nearest integer. Here frat is disard-

ing (A�B) divM so that multipliation by M leaves (A�B) modM . Various

approximations are made, whih leave a small frational part to be rounded o�.

In partiular, we assume that M

�1

is already known to just over 3m plaes

after the point where m is the number of digits in M , A and B. Of ourse,

the �rst m (approximately) of these digits are zero. Then (A�B)�(1=M) has

an auray to over m plaes after the point, so that multiplying its frational

part by M will give a result that is aurate to within

1

4

, say. Rounding to the

nearest integer will then give the orret answer. The preise auray needed

in the alulations is not important for the disussion here, but is easy to �nd.



IEE Eletronis Letters, vol. 30, No 17, 1994, pp. 1397-1398 3

The only requirement is that suÆient auray is employed to perform exat

rounding by inspeting a small onstant number of frational digits.

Aurate appliation of frat takes time. A hange of 1 in the value of A�B

hanges (A�B)�(1=M) by about 1 in the position m plaes after the point.

Hene frat may need to examine just more than the �rst m plaes after the

point for omplete auray. By examining only one or two suh plaes, frat

may be out by �1, so that the end result di�ers byM from (A�B) modM . The

output is then in the range 0 to 2M rather than 0 toM . This is a typial penalty

of saving time, but is not a problem in RSA ryptography where a large number

of onseutive modular multipliations are performed. In suh ases, the orret

range 0 to M need only be ahieved after the last operation. We will assume

this approximation to frat is used.

3 The Notation

Using a redundant number system enables addition to be done with bounded

arry propagation. We assume A and B and all intermediate results have suh

forms, but not M or 1=M , whih we will suppose to be in binary form. We will

also assume that eah multipliation is done sequentially on the same hardware.

The prohibitive ost of the extra hardware does not seem to warrant the small

extra speed ahievable by trying to do more at one.

Let b be the base of our redundant representation. We may assume A < 2M

and B < 2M . Then m = dlog

b

2Me is the maximum number of (redundant)

digits in A or B, and n = dlog

2

Me the number of bits in the modulus M .

The largest multipliation involved here is that by 1=M . So we need hardware

to perform a 2mdigit�2n bit multipliation. The produt A�B of m digit re-

dundant numbers an be split fairly easily to use this hardware if the degree of

redundany is not unreasonable.

4 The Largest Multipliation

The 2mdigit�2n bit multipliation generates 4mn digits, with up to 2n of these

representing the same power of b. Here

1

8

th

of them will be disarded when frat

is applied beause they overow into the integer part. Also, almost half of them

represent suh low powers of b that they an only inuene the rounding proess

through arry propagation: those with indies below about�m�log

b

m will make

a total di�erene of less than

1

2

to the �nal outome and so an be ignored. Thus

we an assume that only about 2mn digits need adding together. These an be

redued to 2 redundantly represented numbers using a tree struture of 3-to-2

redundant number adders built from 3-to-2 bit adders (Figure 1). This tree has

a maximum depth of about log

3=2

n 3-to-2 bit adders and involves an area of

one 3-to-2 bit adder for every bit removed in transforming the input digits into

output digits. This is essentially Wallae's onstrution [8℄.

In fat, the 3-to-2 adders an be more losely paked than ounting a depth of

3 gates eah as illustrated shematially in Figure 2. Some inputs are not needed



4

�

^

�

^

_

1

1

2

2 2

(a) Full Adder for Bits (b) Full Adder for Numbers

Fig. 1. 3-to-2 Adder

�

�

(a) 4-to-2 Adder

� � � � � � � � � �

� � � � �

� � � � �

� � � � � �

� �

� � � �

� �

� �

� �

� �

�

�

�

(b) 15-to-2 Adder with depth of 12 gates

Fig. 2. Paking of Adders

immediately and some outputs are generated early. Hene adders like the 15-to-

2 adder in the �gure an be onstruted with depths of lose to log

6=5

n=2 for

an n-to-2 adder. In RSA ryptography we an expet n to be a little in exess

of 512 and so about 32 gates depth will suÆe to redue the 2n summands of

the multipliation to 2 redundant numbers. A further 2 or at most 3 gates will

redue this to a single redundant number (e.g. onsider using 2 binary registers

to hold a redundant number).

Now let us onsider the initialisation time to reate the summands for adding.

Eah input bit needs to be distributed to 2n di�erent positions for ANDing with

a bit from the other multipliand. This an be done by a tree of multiplexers of

depth no worse than, say, log

4

2n, whih is about 5 in our ase. However, only

one digit position has as many as 2n digits to sum, so that digits an be routed

preferentially there in order to ut the overall depth. Adding the time of 2 gates



IEE Eletronis Letters, vol. 30, No 17, 1994, pp. 1397-1398 5

for setup and hold times of registers, plus one or two gates to enable the hardware

to be used for the various multipliations leads to a grand total of about 40 gates

along a ritial path. With 3 multipliations being done to perform the modular

multipli- ation, we obtain 120 gates delays altogether over the three lok yles

needed.

5 Comparison with Standard Implementations

The standard algorithms when pushed to their limits, require a onstant depth

of 9 or 10 gates per lok yle (see [9℄ and [3℄), with marginally over n lok

yles per modular multipliation. For n = 512 or so, this means the method

above provides a forty-fold inrease in speed, whih almost doubles every time n

is doubled. Indeed, repeating the alulations shows a speed advantage for word

lengths right down to n = 8, at whih point a non-redundant representation

would be employed to do the whole multipliation in a single lok tik.

What is the ost? The area of the standard algorithm is linear, as is the

time. However, the logarithmi time for the new algorithm requires 0(n

2

) area.

Spei�ally, about 20n gates for the standard algorithms (more for the fastest

implementations), and 20n

2

here if two binary numbers provide the redundany,

with linear hanges to both for other representations. Overall, the logarithmi

method is therefore n times more expensive in area, requiring some 5�10

6

gates

for typial hoies of n � 5�10

2

. This is just about possible with urrent teh-

nology.

We have negleted the e�et of long wire lengths. Along the ritial path

this will typially be omparable with the edge length of the area of the hip

being utilised in both algorithms beause information needs to be transported

right aross the hip. For the lassial algorithms, this will be of length O(

p

n),

and so adds O(n

p

n) time to the multipliation, whereas for the sheme here

the length is O(n), whih adds just O(n) to the total time. Thus wire length

eventually dominates the time in both algorithms, but is always muh greater

for the standard algorithms.

Finally, we note that some of the hardware stands idle at the end of eah

multipliation yle. It is only the middle digits in the output whih required

the full depth of the hardware for their alulations. The end digits an be

produed with almost zero depth. However, on average a typial digit requires

the summation of half the number of inputs that the middle digits have. The

tree struture of the addition means that, although only half the hardware is

need for this, its depth is just one gate less than for a middle digit, so that it

takes almost the same time as the worst ase. Hene, overall the hardware is

running at almost full apaity. The only improvement in use ould be through

pipelining, as mentioned earlier.



6

6 Conlusion

It is now possible to onsider logarithmi time (Wallae tree) VLSI implementa-

tions for modular multipliation. This strethes urrent tehnology to the limit,

but provides nearly two orders of magnitude inrease in speed when inputs have

500 or so bits, as typially in RSA ryptography.

Referenes

[1℄ R.P. Brent & H.T. Kung, The Area-Time Complexity of Binary Multipliation,

J.ACM, vol. 28, 1981, pp 521-534.

[2℄ E. F. Brikell, A Fast Modular Multipliation Algorithm with Appliation to Two

Key Cryptography, Advanes in Cryptology - CRYPTO '82, ed. Chaum et al.,

Plenum, 1983, pp. 51-60.

[3℄ S.E. Eldridge & C.D. Walter, Hardware Implementation of Montgomery's Modular

Multipliation Algorithm, IEEE Trans. Computers, vol. 42, 1993, pp. 693-699.

[4℄ P.L. Montgomery, Modular Multipliation without Trial Division, Mathematis of

Computation, vol. 44, 1985, pp. 519-521.

[5℄ R. L. Rivest, A. Shamir & L. Adleman, A Method for obtaining Digital Signatures

and Publi-Key Cryptosystems, Comm. ACM, vol. 21, 1978, pp. 120-126.

[6℄ M. Shand, P. Bertin & J. Vuillemin, Hardware speedups in long integer multiplia-

tion, ACM SigArh, vol. 19 no. 1, Marh 1991, pp 106-113.

[7℄ B. Sugla & D.A. Carlson, Extreme Area-Time Tradeo�s in VLSI, IEEE Trans.

Comput., vol. 39, 1990, pp 251-257.

[8℄ C.S. Wallae, A suggestion for a fast multiplier, IEEE Trans. Ele. Comput., vol.

EC-13, 1964, pp 14-17.

[9℄ C.D. Walter, Faster Modular Multipliation by Operand Saling, Advanes in Cryp-

tology - CRYPTO '91, Leture Notes in Computer Siene, vol. 576, Springer-

Verlag, 1992, pp. 313-323.

[10℄ C.D. Walter, Systoli Modular Multipliation, IEEE Trans Computers, vol. 42,

1993, pp 376-8.


