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Abstract. Using normalised input directly for on-line arithmetic does
not always lead to minimal on-line delay. Shifting some inputs can reduce
the average delay.
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1 Introduction

On-line algorithms consume their inputs and generate output digit serially at
the same rate, most significant bit first. So there is a natural, fixed time delay
δ between input and output of corresponding digits: the output digit of index
j depends solely on the input digits of index j+δ or less. Such algorithms for
multiplication, division and square root have been extensively studied in the
literature, usually using a simple addition for the iterative step (see [2], [4], [1]),
but sometimes using a fuller, more accurate computation (see [3]), or without
all inputs being on-line (see [5]). However, it is invariably the case that only nor-
malised or pseudo-normalised input is allowed (i.e. that in the half-open intervals
[1/2, 1) or [1/4, 1)), and this rarely fits well with an optimal choice for δ: δ could
be reduced by changing the input interval. In practice, it is more convenient to
retain the usual input intervals, but shift those inputs for which the reduced
value of δ fails. The input conditions necessary for the reduced delay need to be
established, and a procedure given for deciding which inputs should be shifted.
They are considered here in the case of multiplication where, because of the
small value of δ, the detail is at one time more significant and less obscured by
the algorithm.

2 The Notation

We start with a definition of the multiplication algorithm. We consider mainly
mantissas M of real numbers with redundant radix 2 representations M ≡
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t=1mt2

−t, where the digit mt lies in the signed digit set {−1, 0,+1}. At time

j ≥ 0, the first j digits provide inputsX[j] ≡
∑j
t=1 xt2

−t and Y [j] ≡
∑j
t=1 yt2

−t.
The output digit pj−δ of the product P is formed using the scaled partial re-
mainder

W [j] = 2j{X[j]×Y [j] − P [j−1−δ]}

which is calculated using the recurrence relation

W [j+1] = 2W [j] + yj+1X[j] + xj+1Y [j] + 2−1−jxj+1yj+1 − 21+δpj−δ

with initial value W [0] = 0. The digit pj−δ is chosen to minimise W [j] if it were
included in its definition, but speed is gained by using just the approximation
W [j]′, which is given by truncating all digits after that of index ε. So, for some
fixed integer i, we define

pj−δ = +1 if 2εW [j]′ ≥ i
0 if |2εW [j]′| < i
−1 if 2εW [j]′ ≤ −i

It is fairly straightforward to show by induction on j that

B[j] = 21+δ−|X[j]|−|Y [j]|−2−j

is a bound on the absolute value of W [j] for j > δ when both

21−εi + 4 ≤ 21+δ and
21−ε(1−i) + 4 ≤ 0

hold. This is optimally the case for δ = 3, ε = −1 and i = 2 or 3.

3 Input Bounds.

Redoing the proof of the algorithm for fixed δ, ε and i enables conditions on the
inputs to be derived for which the algorithm will work. For the base case of the
induction argument we require |W [δ]| ≤ |B[δ]|. This certainly holds for |X| < 1
and |Y | < 1 since |X[t]| ≤ 1− 2−t and |Y [t]| ≤ 1− 2−t for all t ≥ 0.

Now assume W [j] ≤ B[j] where j ≥ δ. For convenience, suppose X > 0,
Y > 0 and ε < δ. The induction step for pj−δ = 1 is easy to verify because
the bounds B[j] are chosen precisely so that it does work. So suppose pj−δ = 0.
As W [j] has at most j digits after the point, W [j]+2−j ≤W [j]′+2−ε ≤ 2−εi.
Hence, from the definition of W [j+1],

W [j+1] ≤ 21−εi− 21−j +X[j+1] + Y [j+1]− 2−1−j

which is at most B[j+1] when

21−εi+ 2X + 2Y ≤ 21+δ
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Now suppose pj−δ = −1. Then, W [j]+2−j ≤ W [j]′+2−ε ≤ 2−ε(1−i), and so,

W [j+1] ≤ 21−ε(1−i)− 21−j +X[j+1] + Y [j+1]− 2−1−j + 21+δ

This is at most B[j+1] if

21−ε(1−i) + 2X + 2Y ≤ 0

Combining these two inequalities, we obtain convergence of the algorithm when

|X|+ |Y | ≤ min{2−ε(i−1), 2δ−2−εi}

Clearly, as |X|+|Y | < 2, this holds for the original choice of parameters.

4 Fractional Delays

An improved delay is obtained by the choice δ = 2, ε = 1 and i = 4 or 5, for
inputs satisfying |X|+|Y | < 3/2. If the multiplier receives normalised input, then
over-large inputs must be shifted down until they are small enough to satisfy the
initial conditions. A fractional average delay results which is an improvement on
the earlier δ = 3. The cost of this is i) not all output shows the same time delay,
ii) the initial bound checking, and iii) the extra digit used in W ′ for computing
the output digit.

Suppose the two inputs are uniformly and independently distributed over the
interval [1/2, 1). Half the inputs satisfy the bound and theoretically for them we
could have just 2 cycles delay between input and output. For the other inputs,
the larger input must be divided by 2 before the multiplication, resulting in
3 cycles delay. This apparently yields an improved average delay of 2.5 cycles.
However, the exact test to see if the bound is met requires the examination of
arbitrarily many digits, and so is not feasible since it must be completed before
the output digits start to be generated. Thus any required action needs to be
based on the first δ input digits. Already x1 = y1 = 1 because of the assumptions
on the input range. Without looking at further digits, only when x2 = y2 = 0
is the input bound now guaranteed. Otherwise, just in case, either input, say
X, must be halved to guarantee the condition holds. This can be done without
changing the already processed first digit by inserting 1̄ for x2 and delaying
the actual x2 and subsequent digits by one cycle. In consequence the output is
generated one cycle later, i.e. as if δ were 3. Three quarters of all inputs are
delayed in this way by one cycle. But, overall, an improved average delay δ of
2.75 is thus obtained.

5 Conclusion.

We have shown how to reduce the average delay for on-line algorithms at minor
hardware cost, illustrating the ideas using the example of multiplication.
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