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A CLASS NUMBER RELATION IN FROBENIUS
EXTENSIONS OF NUMBER FIELDS

COLIN D. WALTER

Let K/k be a normal extension of algebraic number fields wiGeeis groupG is
a Frobenius group. Thek/k is said to be a Frobenius extension. Most of the
structure of the unit group and of the ideal class grouf iefdetermined by that of
the subfields fixed by the Frobenius kerhelnd by a complemer. Here this is
investigated wheis is a maximal or metacyclic Frobenius group. In pawiGuhe

results apply firstly to the normal closurekm*\)/a )k wherea O k andp is a rational
prime, and, secondly, whea is a dihedral group of ordemZor an odd integen.
A. Scholz, takingh = p = 3, was the first to consider this problem.

The first section describes some basic propertieeeoftoup ringZ[G] and the
second section, which could be omitted in a preliminaading, just serves to
calculate a certain index iffG]. The result is Theorem 2.1. In 83 the aim is to
study the unit indexQ which appears in the class number relation and a baund i
obtained for it in Theorem 3.6. Then, in Theorem hd,dlass number relation itself
is derived. All the extraneous factors therein dividpoaver of the orden of N.
This is explained in Theorem 5.3 by an underlying isomermliietween the maximal
subgroups of the ideal class groups whose orders are prime to

The overall plan used to discover the class numberiael# to eliminate the
group of Minkowski units from R. Brauer’s relatioh] [and to calculate the conse-
guent index irZ[G] by using regulators. When these ideas were first eégHilnn an
abstract of I1] at the Oberwolfach meeting in August 1975 discriminantewsed
instead of regulators, with the disadvantage that thexindeZ[G] could be
determined only for totally real fields. This rediido applies to W. Jehne’s subse-
quent paperd] on Frobenius extensions @f with maximal type. The general case
for maximal Frobenius groups had already occurred9jn ut reappears here
together with the metacyclic case. Some more speauifitacyclic extensions have
been examined by F. Halter-Koch and N. MoserRj8,§, and8], while T. Honda in
[5] has found the appropriate isomorphism of ideal class grdopsgeneral
metacyclic Frobenius groups.

The author gratefully acknowledges the receipt of a gramh fTrinity College,
Cambridge.

81. Frobenius Groups. Let G be a group with ordeG| = nf wheren andf are
co-prime and such thatl G impliesg" =l org'= 1. Suppose also that
N={gOG|g"=1}
is a proper normal subgroup & ThenG is called aFrobenius group and N its
kernel. Let S [ Z[G] denote the sum of the elements in a sulsef G. A

complement of N is a subgroupg- for which FN=G. There are precisely such
complements, which are conjugate under element. ofThey have ordef and
intersect pairwise in the identity, whithas orden. Hence

1.1 N+YF=G+nl,

where the sum extends over all complemé&ntd his implies
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1.2 1Z+118 = 18 +118,

Wherelﬁ denotes the character Grinduced by the unit character on a subgrblup

The centraliser of an element Mf- 1 is contained ilN. HenceN — 1 decom-
poses into orbits of lengthunder conjugation by elements Bfandf dividesn-1.
ThusG is calledmaximal if f=n-1. In this situatiorN is an abelian group of prime
exponent. Now supposé is metacyclic. Then botN and F are cyclic with
generatory and grespectively, say, which satisfy a relatioslp= @u Heren must
be odd. From this point, it is assumed tBads of one of these two types.

1.3 DeFINITION. Let{v O N| O0<i < f-1} be the set N -1 when G is maximal
and the set with v, = V when G is metacyclic. For the fixed complement Fo,
generated by gwhen G is metacyclic, let Y’ and []' denote sums and products over
the f complements viFovi ™.

Most other sums and products extend over the full secomplements. Finally,
for a left fespectively right) G-moduleX and a subgroupl of G let HX (respectively
XH) be the subgroup of fixed under the action di. For exampleNK andFK are
the subfields oK fixed by N andF.

1.4 LEMMA. Let Z betheintersection of Z[N] with the centre of Z[G]. Then
ZIN] = Yy viZ
i

and thissumisdirect up to elementsin Z N.

Proof. Z is generated by 1 and the elements Y. h™gh where theg, are
representatives of tha ¢ 1)/f conjugacy classes ilN — 1. The equality comes from
1+3ivi= N ONVZ in the maximal case. For the metacyclic case ntmimum

polynomial [x.¢ (x — h'vh) of v overZ shows thav', and therefore any power of
lies in Y viZ. The directness is apparent from diin= 1 + fi—1)/f.

1.5 THEOREM. For any Z[G]-module X define X' = YFX. Then X' is the
Z[G]-module generated by any FX and X' = > 'FX. Also define X, = NX + X'.
Then the sum X, = NX + > ’FX isdirect up to e ements whose nth multiple lies in
GX. Moreover, nX [ Xo.

Proof. Forg [0 N use 1.4 to choose, [ Z for whichg = Y via;. If x O FoX
thengx =3 viaix 0 >’ FX. Thusy’' FXis aZ[G]-module and contains eveRX.
From 1.1 we havenX O NX + > FX O Xo. Also that equation yields

1.6 Q[G] = NQ[G] + 3’ FQ[G],

by the first part. A comparison of dimensions showat tiis sum is direct up to

elements IMG. Let 1 =gy + >’ e be a corresponding decomposition of 1 with

nev = N andne: O FZ[G], say. LetH, H' O {N, viFov'} be distinct. Then

nesH' 0ZG by decomposing—T’ under 1.6. Ifxe O FXfor F # H one finds that
neXs = ney (N = idhF hg,-h’l) X = ney N Xe — Yiney EngF 0 GX.
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Similarly, whenxy O NX one obtainsne-xy 0 GX becausene- = Fa for some
o O Z[N]. Hencenexy O GX if x4 O H'X. Consequently
NXy = Y1 NEH X = Ney Xy moduloGX.
Suppose y x4 = 0 withxy O HX. Then
0 =neyduXq = ney Xy = NXy ModuloGX

andnxy 0 GX. Thus the sum foX; is direct as far as stated.

1.7 LEMMA. Suppose G is metacyclic. Define B 0 Z[G] by (v-I)'Bi = Fo(v-)'.
Then there is a direct sum decomposition of left Z[G]-modules

Z[G)/NZ[G] = [, i<s Z[NIB/INZ[G].

Proof. Let B be the column vectorfq, By, ..., Br1)" and @ the column vector
(1LO@, ...¢™")". ThenMe=p for the matrixM = (my) with m; = (v"' =)'/ (v-1).
M is a Vandermonde matrix whose determinant is the fihit(v''=v" )/(v = 1) of

Z[N)/Z N . HenceM is invertible and 1 may be expressed as a linear ipatin of
theB’s. The rest is now clear .

82. An Index Theorem. SupposeC is a subgroup of order= 1 or 2 generated
by y O G. For any subgroupl andg OO G write HgC = I:|gé or 3 I:|gé for the
generators oHZ[G]C overZ, and HgC| = [H||C| or H| respectively for their values
under the unit character Gt Letr,(H) be the number of such generators with| 2|
elements, and sejH) = di mZ(HZ[G]C/Zé).

2.1 THEOREM. Z[G]C/(NZ[G]C + S FZ[G]C) has finite order n ™2 jn the
metacyclic case and n“ N VOOD2 0 the maximal case. The exponent of the
group isprecisely n.

The rest of the section is devoted to a proof of tlikere are three possibilities
fory:
y=1, yON-1, or y O N.

Replacingy by a conjugate does not change the order or the expohtmd quotient
group. Thus ify O N it may be assumed thgtld F,. Becausd-,gC = Ifogc for
gON-1 we have

22 1(F) =0, n/2, and (n-1)/2;
r(F) =n-1, (@-2)2, and (n-1)/2; and
r(N =f-1, f-1, and (f-2)/2,

respectively in three cases.

From the proof of 1.5nC decomposes iNZ[G]C + Y FZ[G]C with component
NC in NZ[G]C. So the exponent is for metacyclic groups. Fo& maximal 1.1
yields the explicit decompositiorf: =NC+ Y IEO A-y )6 and hence an exponent
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The Metacyclic Case. Fory = 1 the required index is

[zIGIINZIG] : 3" ZIGIFINZIG]] = 3 Z[GIBINZIG] : 3 ZIG]Fo(v-1)/NZ[G] ]
=i [ ZINIB/NZIG] - (v—)'Z[NIB/NZ[G] ]
- |_|i r]i — nf(ffl)lz

by 1.7. Otherwise the assumptips ¢ holds. LetA = CZ[G]B/NZ[G]. Thenp
may be replaced by
B’ = (/Lﬂ) Bi

to give ¢! + (-1)v)B’ with 1 <j < (n-1)/2 as a basis o% overZ. A O VA is a
Z[G]-module because @ O A thenv’a = —a +v(v + va O A O vA. Wheni is
even,

Br=-Y; (v +v)B'OAOVA  sothat A OVA =Z[G]B/NZ[G].
Wheni is odd,
v-vHp'OA DOVA  sothat A OVA = (v -1)Z[G]B/NZ[G],
and this has indexin Z[G]Bi/NZ[G]. Hence if
B = YiA = CZ[G]INZ[G]
thenB O vB has indexn " in Z[G)/NZ[G]. A; O VA= Z[G]Fo/NZ[G] shows that if
D = > CZ[G]F/NZ[G] thenD 0O vD = ) Z[G]F/NZ[G]. Thus the required index
g=[B: D] is given by
n'™2 = [ZIG)/NZ[G] : 5 Z[G]FINZ[G]]
=n"[BOvB:D OvD]

fl2 {2

=n"q".

The Maximal Case. WhenG is maximal the techniques ofl] are suitable for
the order calculation. Define a pairing iG] x Z[G] by (x, y) = |G|’11§3 (xy*)
where * is the involution induced ly— g™ for g 0 G. If X is a subgroup aZ[G]
with basis ¥} let

R(X) = [det(x. x))|
be the regulator oX. This is independent of the choice of basis.

2.3 LEMMA. If X =) FZ[G]C then R(X) = fn( DR, frafF)

Proof. Letg, g O N- 1 be fixed. Theghgh’ = 1 impliesh’ =h™ for h, b O F.
But ghgh™ = 1 has only one solution 0 F. Hence glfg’lf contains the identity
once. Ifg0N-1andg' =1, org ON-1andg=1, then 1 does not appear in
glfg’lf , but it occurd times forg=¢g = 1.
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ChooseS [0 N -1 so that FsC | s 0 Sor s = 1} is a basis oFZ[G]C. If
t, ! ON-1ands, s 0O Sthen (FSC, tFsC) is ¢ times the multiplicity ofl in

t 'FsCsF . Sincesys "' O F for ¢ = 2 the value of the pairing is given by:

=t t£ ¢t
s=s | cf -c
0

S#S \ c?

Also (é, é) = nf and ((3, tlfsf:) = cf. Take {é, tFsC |t O N-1,s0 S for a
basis ofX. The corresponding matrix f&(X) includes § x |§ blocks, one for each
pair t,t ON-1. Observe thag|=r(F)and letJ, J;, andJ. be ther (F) x r (F),

1 xr(F), andr (F) x 1 matrices consisting entirely of unit entries. Ttemregulator
may be calculated as follows :

nf cfJ, cfJ, cfJ,
cfde cfl cAJ-cl cAJ-cl
R(X) = cfJe J-dl cfl J-dl
cfde A-c cJ-cl cfl
nf 0 0 cfJ,
e cnl-cX 0 2l -cl
= cfde 0 cnl =) 2l -cl
e c-cnl cAJ-cnl cfl
nf cfJ
= fnl -c2J"? , r
cf “Je cl +c*(n-2)J

. n cJ
= {(cn)™H(en - Ar (P} r
cJe cl
_ (F-1)(ry(F)-1) f_frfF)
= fn (n-cr(F)c

PO DIAO o o

Let p:Z[G]C - L, = Z[G]C/Zé be the natural map and define a pairing on
L, xL, by (ox py) = |G|’1(1? -1)(xy*) for x, y O Z[G]C and the involution
*: g0G— g"*. Suppose is a subgroup daf . Take {x} in Z[G]C such that px;}
is a basis oK. Then {G, x} is a basis op*X. So
%) (x,G)

(G.%) (G.G) ;.
But (ox, gy) = (X, y) — |G|’1(x,é)(é ,y) for x,y O Z[G]C. Hence row operations
give R(o™X) = |GIR(X) for the obvious definition oR(X). Now 2.3 yields

R(p'X) =
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2.4 LEMMA. R(z |:|_y) — r,|(f—1)ry(F)—f2frzy(F)-

If x, y O Z[G]C satisfypox O NL,andpy O » FL then (ox, py) = 0. Also the sum
NL,+ > FL is direct by 1.5. Thus,

2.5 LEMMA. R(NL,+ ¥ FL) = R(NL) R(Y FL).
From [11], 3.5 and 3.3, the following facts may be recalled :
26 RHL) = [GIH""2 for a subgroup H;
2.7  R(Y) = [X:Y)’R(X) for subgroups X, Y of L, for which [X: Y] is defined.

Combining equations 2-2.7 forX =L andY=NL + ) FL gives the order of
Z[G]C/ (NZ[G]C + > FZ[G]C)
as
3 p NHED0F)DY 4
[X:VY] = {R(NL) R FL)/R(L)}? = {n" D002

The power of 2 is eliminated by observing tha(H) = 1ﬁ (1 -vy)/2 and evaluating
1.2 at (1-vy)/2.

83. The Unit Group. Suppose the normal extensikifk of number fields has the
Frobenius grouis as its Galois group. Lét andW be the groups of units and roots
of unity inK.

3.1 LEMMA. W=NW and FW=GW.

Proof. Let H = Ga(K/k(W)). ThenH is normal inG andG/H is abelian. The
former property impliesd £ N or N 00 H. However, ifH [0 N thenG/H is Frobenius
and therefore not abelian. Th<] H andW = NW. Now setH’ = GalK/k(FW)).
Then, similarlyN O H’. ButF O H’ also. Thereforél’ = G andFW = GW.

The unit groupU will be written additively when the notation makessthiore
convenient. In particular, for a subgrodpof G let QHU be the subgroup of units
with some non-trivial multiplei . power) fixed byH. Define

3.2 I(H) = [HU n QGU : GU + HW].
It was shown in11, §4] thatl(H) divides [G : H].

3.3 LEMMA. QGU = NQGU + FQGU and the sum is direct up to elements in
GU. Hencel(1) =I(N)I(F).

Proof. The three groups moduldGU + W have orderd(1), I(N), and I(F)
which dividenf, f, andn respectively. The sum is therefore direct becausd )(=
1. Chooses, b O Z such thatan + bf = 1 modnf. Takee 00 QGU and write ] for
its class moduldsU + W. SinceG acts trivially onQGU/(GU + W) it follows that
[€] = [(an + bf )e] = [N ag] + [IE be] O (NQGU + FQGU)/(GU + W).

Application of 1.5 shows thaQ = [U : U] is finite and divides a power of
Theorem 4.1 of]1] proves that QFU : FU + W] dividesf, which is prime tan, and
FU + WO Uy Therefore

3.4 QFU O U.
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Now the directness of 1.5 far together with 3.3 yield

3.5 LEmmA. QFU = FU + NQGU.

3.6 THEOREM. Let r(H) be the rank of HU/HW. Then Q = [U : Uo] divides
In™DEETE for | = [QNU : QNU n Ug] and | in turn dividesn.

Proof. For anyZ[G]-module X the quotienX/QHX is torsion-free. Take [1 X

with image inH(X/QHX). Then (H| —I—~|)x 0 QHX and sox O QHX. Thus
QH(X/IQHX) = 0. In particular,V = U/QNU hasQGV O QNV = 0. Hence

Vo = >’ FV and 1.5 shows this sum is direct. €lf] U has image ifQFV then

F e —fe 0QNU. So [FV : (FU + QNU)/QNU] divides a power of and the same is
true of Vo : (Uo + QNU)/QNU]. However, the latter index divided and thus a
power ofn. ThereforeVy = (Up + QNU)/QNU andQ = [U : Ug] = [V : V(]l. From
1.5 the exponent o¥/V, dividesn. Also QFV = FV and the rank olNy/FV is
(f-=21rF) - r(G). Thus the index V : Vo] = [VIFV : VW/FV] divides
n( =D -1G) - Finally | dividesn by Theorem 4.1 of1[1].

3.7 LEMMA. ThenormsNwe U = FU satisfy FU = FU + GU.

Proof. Let Sbe a set of representatives for the conjugacy clags¢s- 1 under
F. If e 0 FU then

£ = Eﬁ— S Zhgh‘l% = Ne-FSe 0 GU+ FU.
hOF ¢ S

84. The Class Number Relation. Let {C} be the set of decomposition groups in
G for one prime divisor itk of each of the = r(G) + 1 infinite primes irk. They are
defined up to conjugacy which depends on the chosen embeddidgimo C.
Supposd. andL; satisfy the exact sequencesZ¢6G]-modules

r
0.7 - OZGC - L - 0,
i=1

wheren 0Z — n ;G ; and

0 -7 - 7Z[GIG - L - 0,
wheren 0 Z — nG. In both cases leG act trivially onZ. Both sequences are
exact when fixed under the action of a subgrblupLet Lo =NL + > FL; Ljp =

NLi + Y FLi; Q*=[L:Lg; and Q* = [L;: Li]. ThenQ* and Q* are finite by
Theorem 1.5. Moreover ,

L/Le O {0i Z[GIC}{ O; (NZ[GICi + ¥ FZ[G]C)}
0 O{(Z[GIC)(NZ[G]C + 3 FZ[GIG)} O O LilLi.

Consequently,

r
4.1 Q* - |_|Qi*'
i=1
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The indexQ* is just the order of the group in Theorem 2.1 w@&h= C. If

ri(H) = dimHL; then }; (ri(H)+1) = dimHL + 1 =r(H) + 1 is the number of infinite
primes inHK. Thusr(H) is the rank of the unit grougU/HW. Combining 2.1 with
4.1 yields:

4.2 LEMMA. Q* = n"™-"©"2 i the metacyclic case and

Q* = M- rEH-IE -2 D2 K the maximal case.

Let a bar denote the canonical map- U/W and choose a submodwi of U
which isZ[G]-isomorphic toL. Recall the definitions dffH) andQ in 3.2 and 3.6.

4.3 LEMMA.
[U:M][GU:eM]f Q

[NU :NM][FU:FM]" o*I1(F)f 1

Proof. Begin by observing thatQGU n HU)W = GHU so thatl(H) =
[GHU: GU]. Also GU = QGU/W = (QGU n Up)/W = GU, by 3.3. For con-
venience, leW = GU . Then

Q*[U:M]/[GU :GM] I(1) Q
=[Ug: Md[GM : V] = [Ug/V: (Mo +W)V]

=[(NU +WV/V: (NM+WWV] [T I(FU +WIV: (FM +V)/V]
=[NU:NM+ GNU ][FU : FM + GFU |
=[NU :NM][FU : FM]"/[GNU :NM n GNU ]J[GFU :FM nGFU ]
= [NU : NM][ FU : FM] "7 I(N)I(F) F [GU : GM] 2.

Now apply 3.3.

4.4 THEOREM. Suppose the normal extenson K/k of number fields has a
maximal or metacyclic Frobenius group G as its Galois group. Let h(H) be the
class number and r(H) the rank of the unit group HU of the subfield fixed by a
subgroup H of G. |If the kernel N and a complement F have orders n and f
respectively then

f
h(l)h(G)f = QI(F)l*fn*A’
h(N)h(F)

where

Q = [U:NU []FU] with [] over the complements F;

I(F), definedin 3.2, isthe order of (FU / GU),, and dividesn;

A = 3{r(N) - r(G) + (f —1)(r(F) - 2r(G) + 1)} inthe maximal case; and

A = (f-1)+3f(r(N)-r(G)) inthemetacyclic case.

The quotient group U/U, defining Q has exponent dividing n and it has order

bounded by 3.6. The product Uy = NU []’FU defined in 1.3 is direct up to units
whose nth powersliein k.
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Proof. The form of Brauer’s class number relatidh\vhich is required here
is given in [LO, Theorem 4.1]. This shows that

hohG)' _ nf wj[0:m]jew | [GU:eM]T _  n'Q

h(N)h(F) ' f INW|[NU :NM]nf[FU:FM]T Q*I1(F)f 1
by 3.1 and 4.3. Now 4.2 yields the stated relation.

85. The Class Groups. Let C(H) be the part of the ideal class groupHK
formed from the classes whose orders are prinme to

5.1 THEOREM. For any Frobenius group the following sequence is exact under
the maps induced by extension of ideals.

0 - CG) - C(F) - FC(1)/GC(1) - O.

Proof. The sequence is exact @G) becauseC(G) has order prime to the
degreen of FK/GK. The two central maps compose to give the zero map. Selppos
Z  is a class o€(F) which maps intd5C(1). It is necessary to show thataifis an

ideal such tha&" 0 &~ then the class of the noMdagck a in C(G) maps toZ~. This

will establish the exactness @{F). Let us consider all ideals to be extendedto

and write the group of such ideals additively. Thefrlja is principal forg 0 G

because the image 6f in C(1) is fixed byG. Supposed—1)a = (0g). If h O F then
(ag) = @-1a = @-Lha = h(h'gh—1)a = h(a, 14,)-

Thus it may be assumed that, ., = og anda; = 1. LetS be a set of
representatives for the conjugacy classds ofl under. Then

N-n)a = a :H _1aH:H ~aH
Nmme= 209 = 22" 7907 R&

which is the extension of a principal idealFd€. Finally, to prove the surjectivity, let
Z ' be a class oFC(1)/GC(1) anda an ideal whose image is i '. With S as

above,
a = Eﬁ— > Zhgh_lgl ~ (N - |5§)a
hOF @' S

where ~ is equality up to a principal ideal. Thus the ideBBa in C(F) has image
in 2 becauseN a is in a class of5C(1). Hence the map is surjective and this
completes the proof. Theorem 1.5 yields :

5.2 LEMMA. Let X be a Z[G]-module such that the order of X/GX is finite and
primeto n. Then thereisa direct sum decomposition

XIGX = NX/GX + )’ FX/GX.

5.3 THEOREM. The maximal subgroups C(H) of the ideal class groups of the
HK with orders prime to n satisfy

f
C(1)/C(N) O _gl c(F)VIc(G) ,
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where C(F)® 0 C(F) and the embeddings C(N) U- C(l) and C(G) U- C(F)?® are
induced by extension of ideals.

Proof. ReplaceC(N) by NC(1) and C(F)"/C(G) by FC(1)/GC(1) using 5.1.
Now apply 5.2.
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