Note

Intersection Numbers for Coherent Configurations and the Spectrum of a Graph

COLIN D. WALTER

Department of Mathematics, University College, Belfield, Dublin 4. Ireland

Communicated by Norman L. Biggs Received August 4, 1983

It is shown that the intersection numbers of a coherent configuration are closely related to the determinant of a generic matrix for the corresponding adjacency algebra. This is important as both concepts provide isomorphism invariants for graphs.

The coherent configurations studied by Higman in [1] are of interest in graph theory because invariants for the isomorphism class of a graph are obtained in the intersection numbers of the unique minimal coherent configuration generated by the partition of $V \times V$ induced by the edge set *E* and the diagonal set *V* of the vertices of the graph.

If *A* is the adjacency matrix of a labelled, directed graph Γ with vertex set *V*, one constructs the smallest algebra \mathscr{A} over **C** containing *A*, A^T and the characteristic matrices of sets $S \subset V \times V$ which are maximal with respect to

$$(i, j)$$
 and $(k, l) \in S$ implies $a_{ij} = a_{kl}$ for all $(a_{rs}) \in \mathscr{A}$ (1)

These sets *S* form the partition of $V \times V$ which define a coherent configuration for Γ and their characteristic matrices (the 0,1-adjacency matrices of the graphs with edge sets *S*) generate \mathscr{A} as a module over **C**. Let $A_1, A_2, ..., A_r$ be these matrices. Suppose $X = \sum x_i A_i$ and $Y = \sum y_j A_j$ are two generic matrices of \mathscr{A} . Then the intersection numbers are defined by

$$XY = \sum a_{ijk} x_i y_j A_k \tag{2}$$

They are clearly independent of the vertex numbering and so are isomorphism class invariants. The same is true of the characteristic polynomial det(xI-A) and also of det X, which certainly provides at least as much information as det(xI-A). The object of this paper is to show that the intersection numbers give a finer classification of graphs than does the spectrum or indeed det X, and to investigate how much weaker is the

classification using det X.

Suppose that A_i corresponds to $S_i \subset V \times V$. One may reasonably suppose that the numbers a_{ijk} are provided together with the partition of the sets S_i into diagonal and off-diagonal subsets. From (2) if S_d is a diagonal class with corresponding vertices V_d , then $S \cap V_d \times V_d = S_i$ or \emptyset according as $a_{idi} = 1 = a_{dii}$ or not. Let $J_d = \Sigma'A_i$ where the sum is restricted to those *i* with $S_i \subset V_d \times V_d$. This is the matrix with 1's in the block $V_d \times V_d$ and 0's elsewhere. Hence $J_d^2 = |S_d|J_d$. Equating coefficients of A_d using (2) yields the order of S_d as $\Sigma'a_{ijd}$, where *i*, *j* satisfy S_i , $S_j \subset V_d \times V_d$. Using (2) again one can inductively obtain the coefficients w_{dt} of each A_d for the powers X^t ($t \leq |V|$). Now trace(X_i) = $\Sigma_d w_{dt}|S_d|$ for the sum over the diagonal classes. Newton's formulae applied to the generic eigenvalues of X consequently yield det X.

THEOREM. The intersection numbers determine the determinant of a generic matrix in the adjacency algebra.

Conversely, assume that det X is given together with, as before, the partition into diagonal and off-diagonal sets. Let \mathscr{B} be the algebra over **C** generated by $B_i = A_i^T$ for $1 \le i \le r$. This is the algebra of the graph Γ^T with adjacency matrix $B = A^T$. Its intersection numbers satisfy $b_{ijk} = a_{jik}$ and its generic matrix is $Y = \sum x_i B_i = X^T$. Because det $Y = \det X$, the determinant cannot distinguish a_{ijk} from a_{jik} . However, it will be shown that $a_{iik}+a_{jik}$ is determined by det X.

Let $\{S_d \mid d \in D\}$ be the collection of diagonal sets with corresponding partition $V = \bigcup_{d \in D} V_d$. We will treat det *X* as a polynomial in the variables x_d ($d \in D$). The unique term *z* of highest degree has the form $\prod_{d \in D} x_d^{rd}$ and yields $|S_d| = r_d$ for $d \in D$. For $X = (x_{rs})$, the coefficient of $zx_i^{-1}x_j^{-1}$ for $i, j \in D$ is $-2^{-\delta}\sum_{r \in V_i}\sum_{s \in V} x_{rs}x_{sr} = -\frac{1}{2}\sum_k \delta_{ijk} |S_k| x_k x_k$, where $S_k = S_k^T = \{(r,s) \mid (s,r) \in S_k\}$ defines $k', \delta = 1$ or 0 according as i = j or not, and $\delta_{ijk} = 1$ or 0 according as $S_k \subset (V_i \times V_j) \cup (V_j \times V_i)$ or not. This pairs S_k with S_k^T , establishes when $S_k = S_k^T$ and so yields $|S_k|$ for all k.

The block of S_k is nearly determined: either $V_i \times V_j$ or $V_j \times V_i$ for i, j as above. Make an arbitrary choice of $S_k \subset V_i \times V_j$ for one such triple (i,j,k) with $i \neq j$. This fixes the precise block of all other classes as follows: The action of X on $\mathbb{C}^{|V|} = \mathbb{C}[v \in V]$ induces an action on the subspace \mathbb{C}^r (r = |D|) with basis $\{\sum_{v \in V_d} v \mid d \in D\}$ which is described by the matrix \overline{X} with entries $\overline{x}_{de} = |V_e|^{-1} \sum_{r \in V_d} \sum_{s \in V_e} x_{rs}$. Because the variables in each block are distinct, det X is an irreducible factor of det X with degree r. Set $x_s = 0$ if S_s $\cap V_d \times V_d = \emptyset$ for all $d \in D$, and $x_s = 1$ if $S_s \subset V_d \times V_d$ for some $d \in D$ but $s \notin D$. Then det X specialises to $\prod_{d \in D} (x_d - 1)^{|Vd|-1} (x_d + |V_d| - 1)$ and det X can be recognised as that factor which specialises to $\prod_{d \in D} (x_d + |V_d| - 1)$. Now $S_s \subset V_i \times V \cup V \times V_j$ if, and only if, det X does not contain a term with the product $x_s x_k$ for *i*, *j*, *k* as chosen above. A couple of applications of this produces the block of every class S_s subject to the choice mentioned.

For the intersection numbers a_{uvw} where u or $v \in D$ and $w \notin D$ it is clear that $a_{iww} = a_{wjw} = 1$ for $S_w \subset V_i \times V_j$ and $a_{uvw} = 0$ otherwise; and if $k \in D$, then $a_{uu\,k} = |S_u||S_k|^{-1}$ for $S_u \subset V_k \times V$ with $a_{uvk} = 0$ otherwise. Anyother intersection numbers contribute to the coefficient of $z(x_i x_j x_k)^{-1}$ in det X for some $i, j, k \in D$. This coefficient is obtained by looking at 3×3 submatrices of X which include the three diagonal elements x_i, x_j, x_k and equals

$$(4-p)!^{-1} \sum_{S_{u} \subset V_{i} \times V_{j}} \sum_{S_{v} \subset V_{j} \times V_{k}} \sum_{S_{w} \subset V_{k} \times V_{i}} |S_{w}| (a_{uvw'} x_{u} x_{v} x_{w} + a_{u'v'w} x_{u'} x_{v'} x_{w'})$$
(3)

where *p* is the number of distinct indices among *i*, *j*, *k*; the sums are restricted to offdiagonal classes (i.e., $u, v, w \notin D$); and $S_{t'} = S_i^T$ defines u', v', and w'. Symmetry in (3) for u, v, w ensures that

$$|S_u|a_{vwu'} = |S_v|a_{wuv'} = |S_w|a_{uvw'} \text{ and } a_{uvw} = a_{u'v'w'}$$
(4)

For p>1 the blocks $V_i \times V_j$, $V_j \times V_k$ and $V_k \times V_i$ are distinct and so $z(x_i x_j x_k)^{-1} x_u x_v x_w$ has coefficient $|S_w|a_{uvw}$. This determines the intersection numbers except on diagonal blocks because those a_{uvw} not satisfying $S_u \subset V_i \times V_j$ $S_v \subset V_j \times V_k$ and $S_w \subset V_k \times V_i$ for some $i, j, k \in D$ with $u, v, w \notin D$ are necessarily zero.

Taking p = 1 in (3) and letting q be the number of distinct indices among u, v, w yields the coefficient

$$(4-q)!^{-1} |S_w|(a_{uvw'} + a_{vuw'})$$
(5)

for $zx_i^{-3}x_ux_vx_w$ by virtue of (4). The intersection numbers for the diagonal blocks obtained via (5) are the only ones that cannot be individually ascertained once the choice of block for one off-diagonal S_s is made. If the alternative choice holds so that all the classes S_s have been associated with the transpose of their correct block, then a_{uvw} and a_{vuw} have to be interchanged throughout. However, in either case $a_{uvw} + a_{vuw}$ is known.

THEOREM. The determinant of a generic matrix in the adjacency algebra determines the sums $a_{ijk} + a_{jik}$ of pairs of intersection numbers.

Let \mathscr{A}_d be the algebra given by the block $V_d \times V_d$. Then \mathscr{A}_d is commutative if, and only if, $a_{uvw} = a_{vuw}$ for all relevant u, v, w. In particular, this is the case when the rank

or number of classes $S_s \subset V_d \times V_d$ is sufficiently small. Whenever \mathscr{A} itself is commutative, the a_{uvw} can therefore all be found. Thus the intersection numbers and det *X* determine each other. For the important case when Γ is a regular (unlabelled) graph, \mathscr{A} is simply the algebra generated by the adjacency matrix *A* and the all 1's matrix *J*. So \mathscr{A} is commutative and det *X* yields the same class of graphs as do the intersection numbers.

Reference

1. D. G. HIGMAN, Coherent configurations, Geom. Dedicata 4 (1975), 1-32.