
Veri�ation of Hardware ombining

Multipliation, Division and Square Root

Colin D. Walter

Computation Department, U.M.I.S.T.,

PO Box 88, Sakville Street, Manhester M60 1QD, U.K.

e-mail: dw�sna.o.umist.a.uk

Index Terms: Computer arithmeti, multipliation, division, square root, re-

dundant number systems, reurrene relations.

Abstrat

This note provides a proof, orretions and minor generalisation of algorithms

used by M. Eregova and T. Lang for implementing a hardware module that

ombines multipliation, division and square root. A onsequene of the proof

is the supply of initialisation onditions and bounds for register ontents. Some

subtleties required of an implementation are also noted.

1 Introdution.

In [3℄ Eregova and Lang desribe a hardware design whih ombines algorithms

for multipliation, division and square root and generates output digit serially.

The work desribed here emanates from problems one of my projet students had

in proving the orretness of the design: without seeing a step-by-step derivation

of the algorithm it was diÆult to know how to set about verifying it.

The same authors in [2℄ explain how \on-line" algorithms might be derived.

These are algorithms in whih the inputs are onsumed and the outputs gener-

ated digit serially at the same rate, most signi�ant bit �rst. The tehniques in

[2℄ are appliable in general for iterative arithmeti, inluding here, where most

inputs are provided entirely at initialisation, and the outputs produed one digit

at a time. However, at least for the square root, further ideas are neessary to

omplete the details of the proof.

Reent advanes in tehnology have triggered muh researh into arithmeti

by enabling inreased speed to be gained at the ost of relatively heap hard-

ware. The square root algorithm has, of ourse, been extensively studied. In

partiular, a version of the algorithm here appears in [7℄, and ones using higher

bases appear in [4℄ and [8℄, where di�erent initialisation omplexities arise. The

use of Newton-Raphson iteration for the square root is studied in [6℄. Although

2 C. D. Walter, Hardware Veri�ation

it has quadrati rather than linear onvergene so that it is apparently faster,

the method involves more arithmeti per iteration (a full length squaring) whih

destroys any advantage.

On the bak of the square root ase, at little further expense we have inluded

proofs for the multipliation and division algorithms. This makes sense beause

some initialisation detail is missing in [3℄ and indeed the former produes an

answer whih is out by a fator of 2. Combined modules for multipliation,

division and square root have also been studied in [10℄ where the radix is 4. The

multipliation method used there produes output digit serially starting as usual

with the least signi�ant digit, but here it is in the opposite order, in order to

math the output of the other two algorithms. This type of multipliation has

already been disussed in [5℄, whilst division follows the normal paper and penil

method.

We start with a derivation of some reurrene relations. This proves only the

partial orretness of the algorithms. Total orretness requires also a demon-

stration of onvergene; more spei�ally, that run-time errors are not aused

by overow. This seond part of the proof reveals and exhibits some subtle de-

tail of what is required from a hardware implementation, inluding bounds on

register ontents, and enables us to note some potential problems if the original

desription is varied in any way.

2 Notation.

Sine reals are generally expressed in sign/mantissa/exponent form, we will as-

sume all mantissa representations are shifted to make the �rst non-zero digit

orrespond to a negative power of the radix 2, normally to 2

�1

. As alulations

with the exponents and signs are relatively straight-forward here, only operations

on the mantissas are onsidered further.

We adopt notation in whih upperase haraters are used to denote real

numbers and lowerase haraters to denote digits. So we onsider number repre-

sentationsM =

P

1

t=1

m

t

2

�t

, and sequenes suh asM [j℄ =

P

j

t=1

m

t

2

�t

(j � 0)

where m

t

is a digit. The latter arise for inputs and outputs whose digits are sup-

plied or generated serially.

The addition of two numbers an lead to arbitrarily long arry propagation

if a standard non-redundant binary output is demanded. However, onsiderable

speedup is derived by allowing a redundant representation for the output sine

arry propagation an then be limited, thus enabling digit operations to be

performed in parallel. The algorithms here use a representation for the outputs

of an addition with digits in the range 0::2.

Speed is also ahieved by ignoring less signi�ant digits. This leads to less

preision in the digits of the outputs of the algorithms. The inexatitude is

Miroproessors & Mirosystems, vol. 19, 1995, pp. 243-245 3

reovered in subsequent digits by allowing a wider range of digits for the outputs,

namely �1::1. By inorporating an appropriate onstant delay into suh outputs,

it is possible to onvert to a di�erent redundant representation, or generate two

onverging non-redundant representations whih braket the value (see [1℄).

3 The Reurrene Relations.

The derivation of the reurrene relations of Eregova and Lang [3℄ is straight-

forward. The key step is to de�ne a residual error or partial remainder W [j℄ for

the j

th

iteration. This is a measure of the di�erene between the desired opera-

tion on the inputs so far and the output generated so far. It is de�ned iteratively,

and at eah iteration another output digit is hosen to approximately minimise

its next value. Convergene of the output to the right answer is guaranteed

if this saled residual error is bounded, and this in turn relies on appropriate

normalisation of the inputs and de�nition of the output digits.

Following the notation of [3℄ we denote inputs by X and Y and outputs by

P (produt), Q (quotient) and S (square root). The basi de�nitions are most

onveniently written:

0 = X�Y � P 0 = X � Y�Q 0 = X=2� (S�S)=2

By taking approximations to about j plaes, they yield the expressions

2

�j

W [j℄ = X�Y [j+1℄� P [j℄

2

�j

W [j℄ = X � Y�Q[j℄

2

�j

W [j℄ = X=2� S[j℄�S[j℄=2

for j � 0, whih de�ne W [j℄ as the weighted residual error at the end of the j

th

iteration. Sine the output digits have only positive indies, the initial output

values satisfy

P [0℄ = Q[0℄ = S[0℄ = 0

In [3℄ it is assumed the inputs are in normalised non-redundant form, so that

Y [1℄ = y

1

2

�1

= 1=2 in the equation for multipliation. Hene the initial values

of W are respetively:

W [0℄ = X=2

W [0℄ = X

W [0℄ = X=2

The reurrene relations are obtained by using the formulaM [j℄ =M [j�1℄ + 2

�j

m

j

applied to Y , P , Q and S in the relations for W [j℄ and then subtrating the ex-

pressions for W [j�1℄. Thus, for j � 1,

W [j℄ = 2W [j�1℄ + y

j+1

X=2� p

j

W [j℄ = 2W [j�1℄� q

j

Y

W [j℄ = 2W [j�1℄� s

j

S[j�1℄� 2

�j�1

s

j

2

4 C. D. Walter, Hardware Veri�ation

The quantities on the right side of these relations show what data must

be available as input to the iteration, and hene most memory requirements

in an implementation. Hardware for implementing the algorithms needs two

registers for redundant representations (W and one ofX , Y or S) plus a ylially

rotatable binary register in whih to store 2

�j

.

Comparing these algorithms with those desribed in [3℄, the reurrene rela-

tions for division and square root agree, but not that for multipliation: every

appearane of X in the multipliation algorithm here appears as X=2 in [3℄, so

that P = Y�X=2 is alulated there rather than the true produt { even the

bound of X < 1=2 here appears as the bound X < 1 there. So we must reord

this as an error in [3℄, although the normalisation of the output there should au-

tomatially orret the unwanted fator of 2. The initialisation for W [0℄, whih

is omitted from [3℄, is given above.

4 Output Digits and Residual Error Bounds.

The output digits are hosen to minimise the next residual error as far as possible

using a minimal amount of omputation. The redundant representation allows

some exibility in their hoie so that an estimate W [j℄

0

of W [j℄ is only needed

to two plaes after the point. As W is the output from a arry save adder it has

digits in the range 0::2. Consequently,

W [j℄

0

� W [j℄ < W [j℄

0

+ 1=2 (1)

Thus W [j℄

0

+ 1=4 is, on average, the best approximation to W [j℄. So Eregova

and Lang de�ne:

p

j

=

8

<

:

1 if W [j�1℄

0

� 0

0 if W [j�1℄

0

< �1=4 or � 1=2

�1 if W [j�1℄

0

� �3=4

9

=

;

q

j

= sign(W [j�1℄

0

+ 1=4)

s

j

= sign(W [j�1℄

0

+ 1=4)

where sign maps onto the digit set f�1; 0;+1g in the obvious way. By hoosing

a more aurate approximation W

0

it is possible to inrease the number of zero

output digits so that the iterative step redues from an addition to a simple left

shift, and performane an then be improved (see [9℄).

Establishing the onvergene of the algorithms requires hoosing exatly the

right bounds for the residual error. They are obtained by seleting expressions

whih will only just work in the proofs.

Theorem 1. If 0 � X < 1=2, 1=2 � Y < 1 and Y has the usual non-

redundant binary representation then the residual error in the multi-

pliation algorithm is bounded by

�1 � W [j℄ < 1�X=2 � 1 for all j � 0 :

Miroproessors & Mirosystems, vol. 19, 1995, pp. 243-245 5

Theorem 2. If 0 � X < 1=2 and 1=2 � Y < 1 then the absolute value of

the residual error in the division algorithm is bounded by

jW [j℄j � Y < 1 for all j � 0 :

Theorem 3. (f (7) in [7℄.) If 1=4 � X < 1 and either W [0℄ is in non-

redundant binary form when s

1

is omputed or s

1

= 1 is fored, then

i)W [j℄� 2

�j�1

< S[j℄ < 1 for all j � 0 ;

ii) �1 < � S[j℄ � W [j℄� 2

�j�1

for all j � 1 .

For the �rst two theorems the ase of j = 0 follows diretly from the initial

onditions. The rest follows easily by indution on j using (1) in a ase by ase

analysis of output digit values. For the square root algorithm the same line of

reasoning works providing that a suÆiently good lower bound on S[j℄ is known.

This is given by the lemma below, but �rst note that the extra initialisation prop-

erty is needed. Thus, if X = :01::: produes the representation W [0℄ =

�

1:1122:::

(= X=2) at the time s

1

is alulated, then s

1

= 0 would result. Sine suh X and

S would then satisfy X � 1=4 and S < 1=2, the relation X = S

2

ould not hold.

However, if W [0℄ has standard binary form then s

1

= 1 results. So for a orret

algorithm s

1

= 1 must always hold independently of the representation of W [0℄

and it may need to be forefully initialised.

We need to distinguish two ases: we all s

j

an initial zero of S if s

i

= 0

whenever i satis�es 1 < i � j and a non-initial zero of S if s

j

= 0 but s

i

6= 0 for

some i satisfying 1 < i < j.

Lemma. Given the initialisation of Theorem 3,

i) If s

j

is an initial zero then S[j℄ = S[1℄ = 1=2 ;

ii) If s

j

is the �rst non-zero digit with j > 1 then s

j

= 1 ;

iii) If s

j

is a non-initial zero then S[j℄ > 1=2 + 2

�j�1

.

Proof. Part (i) is immediate from s

1

= 1. Now suppose s

i

= 0 for 1 < i < j.

Then W [j�1℄ = 2

j�2

(X�2

�2

) � 0. Hene W [j�1℄

0

> W [j�1℄�1=2 � �1=2. So

s

j

6= �1, giving part (ii). However, if s

j

is a non-initial zero and s

i�1

is the last

initial zero then

S[j℄ � S[i�1℄+2

�i

� (2

�i�1

+ :::+2

�j+1

) = 1=2+2

�j+1

> 1=2+2

�j�1

:

Corollary. With the initialisation given in the theorems and earlier, all

three algorithms onverge to the orret answer, and jW [j℄j � 1 for all

j � 0.

This is lear, given S[j℄ � 1� 2

�j

. It is worth remarking that jW [j℄j = 1

ould atually arise, but only for multipliation (for example, take X = 1=4 and

Y = 1=2 with j � 3).

6 C. D. Walter, Hardware Veri�ation

5 Summary and Conlusions.

We have proved the total orretness of the algorithms used in [3℄ subjet to a

orreting fator of 2 in the ase of multipliation, and a guarantee that s

1

= 1

in the ase of the square root. The reurrene relations for them were derived

in x3, where the initial onditions, omitted from [3℄, are lari�ed. The de�nition

of the output digits is given at the start of x4. The inputs are subjet to the

range and representation restritions stated in the theorems. As these are less

demanding than those in [3℄ the theorems have been slightly generalised. The

serially produed output is always within 1 in the most reent digit position of

being the orret in�nite preision answer. Finally, in all ases, the residual error

W [j℄ has absolute value at most 1 and so hardware registers of the right size an

now be supplied.

Referenes

[1℄ Milos D. Eregova & Tomas Lang, \On-the-y onversion of redundant into on-

ventional representations", IEEE Trans. Comput., vol. C-36, pp. 895-897, July

1987.

[2℄ Milos D. Eregova & Tomas Lang, \On-Line Arithmeti: A Design Methodology

and Appliations in Digital Signal Proessing", VLSI Signal Proessing III, R. W.

Brodersen, H. S. Mosovitz eds., pp. 252-263, IEEE Press, New York, 1988.

[3℄ Milos D. Eregova & Tomas Lang, \Implementation of a Module ombining Mul-

tipliation, Division and Square Root", Pro. IEEE Intern. Symp. on Ciruits and

Systems, 1989, pp. 150-153.

[4℄ Milos D. Eregova & Tomas Lang, \Radix-4 Square Root Without Initial PLA",

IEEE Trans. Comput., vol. C-39, pp. 1016-1024, August 1990.

[5℄ Milos D. Eregova & Tomas Lang, \Fast Multipliation Without Carry-Propagate

Addition", IEEE Trans. Comput., vol. C-39, pp. 1385-1390, November, 1990.

[6℄ Reza Hashemian, \Square Root Algorithms for Integer and Floating point Num-

bers", IEEE Trans. Comput., vol. C-39, pp. 1025-1029, August 1990.

[7℄ Stanislaw Majerski, \Square Rooting Algorithms for High Speed Digital Ciruits",

IEEE Trans. Comput., vol. C-34, pp. 724-733, August 1985.

[8℄ Paolo Montushi & Luigi Ciminiera, \On the eÆient implementation of higher

radix square root algorithms", Pro. 9th IEEE Symposium on Computer Arith-

meti, Santa Monia, CA, pp. 154-161, 1989.

[9℄ Paolo Montushi & Luigi Ciminiera, \Reduing Iteration Time When Result Digit

is Zero for Radix 2 SRT Division and Square Root with Redundant Remainders",

IEEE Trans. Comput., vol. 42, pp. 239-246, February 1993.

[10℄ J. H. Zurawski & J. B. Gosling, \Design of a high-speed square root, multiply and

divide unit", IEEE Trans. Comput., vol. C-36, pp. 13-23, 1987.

