
A Duality in Space Usage between Left-to-Right
and Right-to-Left Exponentiation

Colin D. Walter

Information Security Group, Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, United Kingdom.

Colin.Walter@rhul.ac.uk

Abstract. Most exponentiation algorithms are categorised as being left-
to-right or right-to-left because of the order in which they use the digits
of the exponent. There is clear value in having a canonical way of trans-
forming an algorithm in one direction into an algorithm in the opposite
direction: it may lead to new algorithms, different implementations of
existing algorithms, improved side-channel resistance, greater insights.
There is already an historic duality between left-to-right and right-to-left
exponentiation algorithms which shows they take essentially the same
time, but it does not treat the space issues that are always so critical
in resource constrained embedded crypto-systems. To address this, here
is presented a canonical duality which preserves both time and space.
As an example, this is applied to derive a new, fast yet compact, left-to-
right algorithm which makes optimal use of recently developed composite
elliptic curve operations.

Key Words. Scalar multiplication, multi-base representation, addition
chain, division chain, dual chain, exponentiation, elliptic curve crypto-
graphy.

1 Introduction

Exponentiation is the highest level arithmetic operation in all the most popular
public key crypto-systems, and in Diffie-Hellman, RSA and ECC in particular.
There are a number of different algorithms for performing exponentiation [8, 7]
which have various properties that allow some control over their time efficiency,
their use of space resources and their susceptibility to side channel analysis.

The ability to choose between processing an exponent from left to right or
from right to left enables implementers to improve side channel resistance (e.g.
by avoiding pre-computed tables [13]) or to make use of more efficient composite
group operations such as double-and-add, triple-and-add and quintuple-and-add
elliptic curve operations [6, 10, 9]. The direction of treating the exponent bytes
may also be determined by the order in which those bytes become available.

These reasons make it of interest to find a canonical way of restructuring
an exponentiation algorithm so that it can process the exponent in the oppo-
site direction. An example of what we would like to do in practice is given

0
O. Dunkelman (Ed.): CT-RSA 2012, LNCS 7178, pp. 84–97, 2012.
c©Springer-Verlag Berlin Heildelberg 2012

Dual Exponentiation 85

by comparing the usual left-to-right m-ary algorithm due to Brauer [3] with
Yao’s right-to-left method [14]. These use the same time and space resources.
Moreover, it is clear how to extend both to sliding window versions that make
the same use of resources. In general, it would be useful to be able to take
any exponentiation algorithm processing the bits in one direction and deduce
immediately a corresponding algorithm for processing the bits in the opposite
direction. Knuth in his well-known Semi-numerical Algorithms [8] describes the
transposition method, [2] §5, which enables one to reverse the order of processing
the exponent and compute the required power using the same time. With care,
the same number of squarings and non-squarings occur in the two directions.
However, this method does not show how to preserve the space requirements,
nor does it provide a canonical re-ordering. Yet the preservation of space usage
is of critical importance to achieve when memory is limited, as on a smart card
or an embedded cryptographic device, as well as on SSL servers with systolic
arrays for processing many exponentiations in parallel. Nevertheless, these space
issues do not seem to have been treated satisfactorily in the literature.

The aim of the present work is too provide a canonical duality between the
two directions which not only preserves the time usage of an exponentiation al-
gorithm but also makes identical use of memory. This is done by starting with
an addition chain which is annotated with the register locations for the inputs
and output of each operation. A careful restriction on the allowable operations
makes the chain reversible, so that the use of space is clearly the same in both
directions. Some additional conditions are required to ensure that the numbers
of squaring and non-squaring operations are also the same for the addition chain
and its dual. The restriction on allowed operations is essentially just a require-
ment on the way the chain is presented, and so does not confine the applicability
of the method. The additional conditions are natural ones in an efficient system
and so are normally satisfied in a practical environment. The main novel contri-
butions here are the establishment of this correct set of allowable operations to
make duality possible, identification of the right conditions to preserve the time
cost of an exponentiation when the dual is applied, and a proof of this property.

Application of the duality process shows that Brauer’s m-ary method has
Yao’s method as its dual, and vice versa. Also, application to Walter’s division
chain method [11] yields a new compact left-to-right algorithm which can take
maximal advantage of recently developed composite elliptic curve operations [6,
10, 9] because the recoding of the exponent can be tailored to the different relative
costs of any desired combinations of squaring and non-squaring operations on
the underlying group, namely the elliptic curve in this case.

Finally, having established that the main space and time requirements are
the same for an exponentiation algorithm and its dual, there are some secondary
space issues to tidy up. When the duality is applied to an addition chain derived
from a recoding of the exponent, extra space may be required to store the com-
plete recoding when processed in one direction, but for the other direction the
recoding may be generated on-the-fly. One may also require the initial inputs
(the base and/or the exponent) to remain at the end of the exponentiation. This
may happen in one direction, whereas they may be overwritten in the other.

86 C. D. Walter

2 Notation & Addition Chains

The duality defined here applies to exponentiation schemes which are defined
in terms of addition or addition-subtraction chains [8]. Most exponentiation al-
gorithms first perform a re-coding of the exponent D, and then convert the re-
coding into an addition chain which is applied to an element M of some group G
to yield the element C = MD. With cryptographic applications in mind, M will
be called the plaintext, D the (secret) key, and C the ciphertext. G might be the
group of points on an elliptic curve. It will be written multiplicatively so that the
operation of interest is C ←MD, which is reasonably called an exponentiation.

In order to obtain a good measure of the computational time for exponentiat-
ing, we will assume there are two (probably distinct) algorithms for performing
the group operation. The first computes M2 for any M ∈ G and is called a
squaring. When the two arguments of the group operation are known to be iden-
tical this algorithm will be used. The other algorithm computes M1×M2 for
any M1,M2 ∈ G and is called a (non-squaring) multiplication. This will be used
whenever it is not possible to guarantee that M1 = M2. Normally M1 6= M2

when this algorithm is applied, but it is possible that M1 = M2 could occur by
chance. However, the same computational cost will be assumed for all applica-
tions of it. Lastly, there may also be a unary operation for computing the inverse
M−1 of M , or, more generally, several unary operations M → Ms, s ∈ S, for a
small subset S ⊂ Z of integers. This enables us to deal with a Frobenius map as
well as inversion. It may be convenient to include squaring in this category. The
following definition picks up these distinctions:

Definition 1.
i) An addition chain of length n for D is a sequence D0, D1, D2, . . . , Dn of
integers such that

a) D0 = 1 and Dn = D;
b) for all k, 0<k≤n, either there are i, j < k, i 6= j, such that Di+Dj = Dk or

there is an i < k such that 2Di = Dk.

ii) A (generalised) addition-subtraction chain of length n for D is a sequence
D0, D1, D2, . . . , Dn of integers such that

a) D0 = 1 and Dn = D;
b) for all k, 0<k≤n, either there are i, j < k, i 6= j, such that Di+Dj = Dk or

there are i < k and s ∈ S such that sDi = Dk.

These translate into exponentiation schemes for D in the obvious way. The kth
step in obtaining MD ∈ G is to compute MDk = MDi+Dj = MDi×MDj or
MDk = MsDi = (MDi)s.

Memory locations for holding elements of G will, for convenience, be called
registers and denoted Ri, i ∈ I, for some small index set I. i (or Ri) will be
called a location of g ∈ G if Ri stores the value of g. In practice, Ri could be any
form of memory, perhaps different for each i so that the cost of reading from or
writing to Ri may very well depend on the value of i. Such costs generally result
in minor differences in execution times between an algorithm and its dual.

Dual Exponentiation 87

In general, for i, j, k ∈ I the multiplicative operation which writes the product
of the contents of Ri and Rj into Rk is denoted µijk, and the powering operation

writing the sth power of the content of Ri into Rk is denoted ι
(s)
ik (choosing “ι”

for inverse because often s = −1). It is clear that, once a location for each Dk

in an addition or addition-subtraction chain is known, then the chain can be

expressed as a sequence of operations of type µijk or ι
(s)
ik . However, to define the

dual chain, only the following restricted sets of operators are allowed:

Definition 2. For i, j ∈ I with i6=j and s∈S, six sets of operators are defined:
i) Copying from Ri to Rj is denoted γij.
ii) Copying from Ri to Rj combined with initialising Ri to the group identity 1G

is denoted γ
(0)
ij .

iii) The multiplicative operation which writes the product of the contents of Ri
and Rj into Rj is denoted µij.
iv) The multiplicative operation which writes the product of Ri and Rj into Rj

and initialises Ri to 1G is denoted µ
(0)
ij .

v) The operation which raises the contents of Ri to the power s is denoted ι
(s)
i .

vi) The operation swapping the contents of registers Ri and Rj is denoted σij.
A location-aware chain is a finite sequence of such operations. ut

Location-aware chains will also be called space-aware chains, especially where
the overall space usage rather than individual data movements are of concern.

Any µijk or ι
(s)
ij can be expressed using a sequence of either one or two of

the above operations with no increase in the number or type of multiplicative
operations. For example, if i 6= k 6= j then Rj can be first copied to Rk using γjk
and then µik completes the process of computing µijk. Similarly, any squaring
µiik can be expressed by first using the copy γik if i 6= k and then the powering

operation ι
(2)
k , thereby making all squaring explicit. If required at execution time,

the two operations from such splittings can always be recombined into one when
deciding the code to execute. Also at execution time many of the initialisations

to 1G in γ
(0)
ij and µ

(0)
ij might be skipped as they are mostly redundant.

The swapping operation enables it to be made explicit when data is moved
around. It is included for completeness as it may be needed in implementations
to put data in a particular location without loosing the data which is already
in that location. Later conditions require this (for the symmetric property),
but data must also be moved around if only certain locations (such as actual
registers) can be used for the I/O of an operation. However, from here onwards,
and without loss of generality, swapping will be ignored in any proofs since it is
irrelevant to them and simply complicates the description of where data is.

3 The Dual of a Location-Aware Chain

The operations in Defn. 2 can be represented using matrices, indexed by I. For
example, if A = (ast) were the matrix for µij , i6=j, then ass = 1 for s ∈ I,

88 C. D. Walter

aji = 1, and ast = 0 otherwise. It is the identity matrix except for an extra
non-zero entry at (j, i). This acts from the left on a column vector containing
the exponents of the powers of the input M which are in each register, adding
the values with indices i and j into the location with index j. In other words,
the matrix performs the same addition as an element of an addition chain.

For a device with two memory locations, i.e. |I| = 2, matrix examples of each
class are, respectively,

γ12 =

[
1 0
1 0

]
, γ

(0)
12 =

[
0 0
1 0

]
, µ21 =

[
1 1
0 1

]
, µ

(0)
21 =

[
1 1
0 0

]
,

ι
(s)
1 =

[
s 0
0 1

]
, and σ12 =

[
0 1
1 0

]
.

This view enables the transpose of each operator to be defined to coincide with
the transpose of its matrix:

Definition 3. The transposes of the operators in Definition 2 are as follows:

γTij = µ
(0)
ji , γ

(0)
ij

T = γ
(0)
ji , µT

ij = µji, µ
(0)
ij

T = γji, ι
(s)
i

T = ι
(s)
i and σT

ij = σij.

Clearly the transpose operator T is a bijection of order two on the set of
operations listed in Definition 2. In greater detail, it is the identity on elements
listed in parts (v) and (vi), a bijection on the subsets of parts (ii) and (iii), and
a bijection between the elements of parts (i) and (iv). Hence the transpose of a
list of such operations will also be a list of such operations, so that the following
concept of a dual chain is well-defined:

Definition 4. The dual of a location-aware chain ρ = (ρ1, ρ2, ρ3, . . . , ρn) is the
location-aware chain ρT = (ρTn, . . . , ρ

T
3 , ρ

T
2 , ρ

T
1).

The foregoing observations imply that the number and type of the power-
ing operations, such as squarings and inversions, is the same for a chain and
its dual. Also, the number of multiplications without initialisation, the number
of copyings with initialisation, and the number of swappings are all preserved
under application of the dual map. However, the number of multiplications with
initialisation and the number of copyings without initialisation are interchanged
by the dual. Additional conditions are required to make these numbers equal
so that the cost of a space aware chain, in terms of the counts of each type of
operation, is unchanged when the dual is taken.

Before tackling these conditions, let us reflect on the choice of operations
in Definition 2. The general operations µijk, i 6= k 6= j, were omitted because
their transposes are too complicated for a sensible definition of a dual chain.
However, the remaining cases of multiplicative operations, namely µij , i 6= j,
are not powerful enough to enable all the required operations to be done. As
a result, the copying operations γij need to be included. The need for closure
under transpose results in the inclusion of multiplications with initialisation.
Lastly, the copying with initialisation arises naturally from the conditions in §4.

Dual Exponentiation 89

3.1 Example

In this example, the notation is illustrated by computing M15 using two registers,
and starting with the addition chain (1, 2, 3, 6, 12, 15). The construction of the
chain under Defn. 1 is usually given explicitly in the form

1 + 1 = 2, 1 + 2 = 3, 3 + 3 = 6, 6 + 6 = 12, 12 + 3 = 15.

but the three doublings can be exhibited by writing it as

2×1 = 2, 1 + 2 = 3, 2×3 = 6, 2×6 = 12, 12 + 3 = 15.

The corresponding computation with M is

(M1)2 = M2; M1×M2 = M3; (M3)2 = M6; (M6)2 = M12; M12×M3 = M15

which contains 3 squarings and 2 multiplications.
A minimum of 2 storage locations is required for this, say R1 and R2. Suppose

that only R1 may be used for input and output. So it is assumed to hold M
after initialisation, and should contain the final value M15 at the end of the
calculation. Using a vector to give the values in the registers, the computation
starts with (M,⊥) in (R1, R2) where ⊥ denotes an undefined or unknown value.
As M is still needed after it is squared, it must first be copied: γ12 yields values

(M,M). Then application of ι
(2)
2 creates (M,M2) and µ

(0)
21 yields (M3, 1G). Here

the 1G is created by the superscript (0), and used to overwrite the M2 as it is
no longer required. This is a feature of the chains of interest that is introduced
in the next section in order to obtain a dual of equal computational effort. Of
course, the computationally unnecessary, and essentially free, initialisation to
1G would probably be skipped in practice. Using γ12 to create (M3,M3) means

that M3 is not lost when the next squaring, ι
(2)
2 generates (M3,M6). Repeating

ι
(2)
2 produces (M3,M12) so that the final multiplication µ

(0)
21 achieves (M15, 1G).

This has the desired power M15 in the desired location R1 at the end of the
calculation. It has also eliminated the unwanted data from R2, which is again a
requirement described in the next section for the chains of interest. Summarising,
the sequence of operations and register contents is thus(
M
⊥
) γ12−→

(
M
M

) ι
(2)
2−→

(
M
M2

) µ
(0)
21−→

(
M3

1G

) γ12−→
(
M3

M3

) ι
(2)
2−→

(
M3

M6

) ι
(2)
2−→

(
M3

M12

) µ
(0)
21−→

(
M15

1G

)
The transposes of the operations γ12, ι

(2)
2 , µ

(0)
21 , γ12, ι

(2)
2 , ι

(2)
2 , µ

(0)
21 are, in order,

µ
(0)
21 , ι

(2)
2 , γ12, µ

(0)
21 , ι

(2)
2 , ι

(2)
2 , γ12. Reversing the order yields the dual chain, which

acts on the registers thus:(
M
⊥
) γ12−→

(
M
M

) ι
(2)
2−→

(
M
M2

) ι
(2)
2−→

(
M
M4

) µ
(0)
21−→

(
M5

1G

) γ12−→
(
M5

M5

) ι
(2)
2−→

(
M5

M10

) µ
(0)
21−→

(
M15

1G

)
It corresponds to the different addition chain (1, 2, 4, 5, 10, 15). In fact, at a higher
level, the dual of the computation M →M3 →M3×5 is M →M5 →M3×5.

90 C. D. Walter

4 Preserving the Number of Multiplications

A standard measure of the time taken by an exponentiation is given by the
following cost associated with the underlying addition chain. Once the execution
time for each type of operation is known, the corresponding weighted sum of the
entries in the cost tuple will yield the total time for exponentiation.

Definition 5. The cost of a location-aware chain is the tuple consisting of the
numbers of each type of operation in the chain, as classified in Definition 2 and
refined to separate the counts of the unary operations in part (v) according to
the value of s ∈ S.

Thus, in particular, the cost of a chain yields separately the numbers of copy-
ings, non-squaring multiplications, squarings and inversions, the first two being
divided into two parts according to whether the operation includes an initialisa-
tion to 1G or not. (Finer time measurements may be required [1].) In order to
preserve cost when taking the dual of a chain, some extra conditions are required:

Definition 6. A location-aware chain is said to be normalised if it satisfies the
following criteria:
i) There is a prescribed subset of registers, indexed by IIO ⊆ I, say, which is
used for I/O1.
ii) The inputs to every operation and the final value in any output register must
be defined, i.e. no operation output or final output depends on the initial value
of any non-input register.
iii) The initial value of an input register and the output from every operation in
the chain must be used, i.e. every operation output is the input to a subsequent
multiplicative operation or is the final value in an output register.
iv) 1G is never explicitly the input to any operation nor explicitly the final value
of an output register.
v) If an operation involving two registers does not include an initialisation to 1G
then the value remaining in the non-result register must be used by a subsequent
multiplicative operation or be the final value in an output register.

The conditions (ii)–(v) actually specify which registers are for input and output:

• Registers RJ with J ∈ IIO will have their initial values used by the chain
and their final values must be defined and not explicitly set to 1G.
• Initial values in registers RJ , J ∈ I \ IIO, must not be used, and final values

in these registers must be removed by initialising them to 1G.

Thus all the I/O registers will both import values and export values, but none of
the non-I/O registers will either import values or export values. Adding copying
operations, with initialisation if necessary, at the end of a chain enables any
outputs of the chain to be via the same set of registers as is used for inputs. So
this condition mainly imposes a requirement for there to be the same number of

1 All that is needed is to have the same number of input registers as output registers
rather than the same subset for both. The restriction here is reasonable for hardware.

Dual Exponentiation 91

outputs as inputs. There need not be just one input – the chain could perform
a multi-exponentiation.

Part (iii) means there are no redundant operations. This can be achieved
from any space-aware chain simply by deleting operations whose values are not
used, i.e. those operations whose output is neither an input to a subsequent
operation nor an output of the chain. Although redundant, it is allowed to have
registers which do not figure in any operations.

Property (iv) means, for example, that neither of the inputs to any multiplic-
ation has been set to 1G as a result of a previous operation with an initialisation
of one of the two named registers. Similarly, the input to a copy or powering
operation should not have been set to 1G by a preceding operation. This does
not impose any real restriction on allowable chains. The unary operations with
1G as an input have 1G as an output and so can be deleted from the chain with-
out affecting the final output(s). A multiplication with 1G as an input has an
output equal to the other input and so it can be replaced by a copy or deleted
entirely according to whether the output is to the register that contains 1G or
not. A copy of 1G can be removed, and an initialisation attached instead to the
previous operation that used the value in the register that needs to be set to 1G.

Condition (v) is easily achieved in any chain by modifying every operation
to include an initialisation whenever it makes no difference to the computations
performed or the values exported. For any operation involving two registers but
with no initialisation, it means that the values in both the named registers will
be used by subsequent operations or exported. Unary operations, i.e. powering
operations, do not have registers affected by this rule.

Finally, the definition really assumes there are no swapping operations in-
volved. If there is any swapping, then, in the obvious way, the old and new
locations of the value in a register need to be taken into account when deciding
whether a value is used or exported or has been initialised to 1G or etc.

The example in section §3.1 is of a normalised chain, as is easily checked. The
I/O subset of I = {1, 2} is IIO = {1}. It is clear that all non-trivial intermediate
register values are used; the unused intermediate values have all been deliber-
ately set to 1G and are eventually overwritten. The dual chain is also clearly a
normalised chain. Both chains in this example have the same costs: there are
three squarings, two copyings, and two multiplications with initialisations.

Theorem 1. The cost of a normalised location-aware chain is unchanged by
taking the dual.

Proof. For simplicity, and without loss of generality, assume there are no unary
operations (i.e. those covered by Defn. 2(v)) and no swapping operations. It
has already been observed that the numbers of such operations are not changed
by taking the dual, nor are the numbers of copyings with initialisation and
multiplications without initialisation.

The proof works by counting the number of instances of 1G or ⊥ (undefined)
occurring in registers, and equating this 1) to the number of operations that
create them and 2) to the number of operations that destroy them. So let γ

92 C. D. Walter

be the number of copyings without initialisation, γI the number of copyings
with initialisation to 1G and µI the number of multiplications with initialisation
to 1G. It will be shown that γ = µI , from which the theorem follows almost
immediately. (In the example of §3.1, there are 2 instances of 1G, 1 of ⊥, and
γI = 0, γ = 2, µI = 2. Equating the numbers yields 1+µI+γI = 3 = 1+γ+γI ,
so that γ = µI (= 2).)

Suppose an arbitrary, fixed register R contains 1G or ⊥ at a given time. Then,
because the chain is normalised,

◦ The previous operation naming R, if any, initialised it to 1G;
◦ The next operation naming R, if any, must be a copy into R;
◦ If R is for I/O, there is always a previous and a next such operation;
◦ If R is not for I/O, the first such value has no preceding operation naming
R and the final one no such subsequent operation.

Of course, the 1Gs which occur are in one-to-one correspondence with the chain
operations which include an initialisation, each being associated with the oper-
ation which created it. Copyings can only overwrite 1G or ⊥, and so there is a
one-to-one correspondence between copyings (with or without an initialisation)
and any instance of ⊥ or non-final instances of 1G, each being associated with
the copying which destroys it. There is only an instance of ⊥ if R is not for
I/O, and then only one. A final instance of 1G means one which remains in the
register at the end of executing the chain. There can only be one such instance,
and it only occurs for a non-IO register. So there is the same number of instances
of ⊥ as number of instances of a final 1G. Thus the number of times register R
is explicitly initialised to 1G is equal to the number of occurrences of 1G in R
during the execution of the chain, and this in turn equals the number of copyings
(with or without initialisation) into R. Summing over all R, µI+γI = γ+γI . So
µI = γ. Since copyings without initialisation become multiplications with ini-
tialisation and vice versa when the dual is taken, and these numbers are the
same, the numbers of them are not changed when the dual is applied. ut

5 Preserving the Chain Output under Duality

The action of a space-aware chain ρ = (ρ1, ρ2, ρ3, . . . , ρn) is given by the compo-
sition ν(ρ) = ρn◦. . .◦ρ3◦ρ2◦ρ1 of its elements. For a specific chain, this would be
calculated as the matrix product, say Mρ, of the representatives for each opera-
tion. The dual chain has action given by the transpose ν(ρT) = ρT1 ◦ρT2 ◦ρT3 ◦. . .◦ρTn.

Definition 7. A location-aware chain ρ is symmetric if ν(ρT) = ν(ρ).

In other words, a symmetric chain is one such that the dual computes the same
output. Its matrix is symmetric because the dual is represented by the transpose
matrix.

Lemma 1.
i) With the above notation for a location-aware chain ρ, MT

ρ = MρT .
ii) The chain ρ is symmetric if, and only if, its matrix Mρ is symmetric.

Dual Exponentiation 93

This gives a criterion for checking whether or not the dual chain will compute
the same value(s): it must be symmetric. In the case of a normalised chain,
Mρ = (mij) has mij = 0 if i is the index of a non-I/O register. This is because
1G is the final value left in register Ri by ρ. Similarly, mij = 0 if j is the index
of a non-I/O register. This is because the initial value in register Ri prior to
applying ρ is not used by ρ. Hence the action of ρ is entirely described by the
sub-matrix of elements indexed by IIO. Consequently,

Theorem 2. If a normalised, location-aware chain has only one I/O register,
then its dual computes the same value.

Thus, unless we are performing multi-exponentiations, a normalised chain and
its dual will certainly output the same values from a given input.

6 Mixed Base Representations

Most exponentiation algorithms start by performing a recoding of the exponent
D (normally from binary) into some variety of the mixed base form [4, 11]:

D = ((dn−1rn−2+dn−2)rn−3+ . . .+d1)r0+d0 with (ri, di) ∈ R×D (1)

where R is a set of allowed radices, e.g. R = {2, 4} or R = {2, 3, 5}; D is a set
of possible digits, such as D = {0, 1, 2, 3, 4}, D = {0, 1, 3} or D = {0,±1,±2};
and there are some rules on the allowable choices for radix/digit pairs (ri, di),
such as a pair of consecutive digits having to include at least one 0 (as in NAF).
In general, these representations can be generated by the usual change-of-base
algorithm modified to vary the base choice as necessary at each step. As an
example, 23510 = (((((1)3 + 0)2 + 1)5 + 4)2 + 0)3 + 1 = 120312450213. A typical
step in generating this is to choose base 3 for 235, obtain the (least significant)
digit 13 as 235 mod 3 and repeat the process on (235− 1)/3 = 78.

Inputs: M ∈ G, D = ((dn−1rn−2+dn−2)rn−3+ . . .+d1)r0+d0 ∈ N where di ∈ D
Output: MD ∈ G
———————————————————————————————–
read P ←M read P ←M

Initialisation: T [d]← P d for all d 6= 0 Initialisation: T [d]← 1G for all d 6= 0
P ← 1G for i← 0 to n−1 do {

for i← n−1 downto 0 do { if di 6= 0 then T [di]← T [di]×P
if i 6= n−1 then P ← P ri if i 6= n−1 then P ← P ri }
if di 6= 0 then P ← P×T [di] } Finalisation: P ←

∏
d6=0 T [d]d

Finalisation: T [d]← 1G for all d 6= 0 T [d]← 1G for all d 6= 0
return P return P

Fig. 1. Left-to-Right (left) and Right-to-Left (right) Table-based Exponentiation.

94 C. D. Walter

The recoding enables the exponentiation to be simplified into a sequence of
easy steps which process the digits from left to right or right to left. Those steps
are converted into a space-aware addition chain when implemented. Normalised,
but high level, versions of Brauer’s m-ary scheme [3] and the scheme of Yao [14]
are illustrated in Figure 1. The first line reads the plaintext input M into the
only I/O register, namely P , and the last line writes the resulting ciphertext MD

from that register. The non-I/O registers named T [d], d∈D\{0}, are initialised
before use in the second line, and reduced to a final 1G in the second last line.
The second last line is included to meet the I/O conditions of being normalised;
it could be omitted, but is good for security.

Considering just the two registers P and T [di] for a fixed i, the matrix cor-
responding to the addition chain which performs the loop iteration of index i is[
ri 1
0 1

]
for the left-to-right version and its transpose,

[
ri 0
1 1

]
for the right-to-left

version. Using Defn. 4, this shows that the composite operations corresponding
to the loop bodies are duals of each other if they are written out in corresponding
ways using the atomic operations of Defn. 2 — the sequence for one composite
operation is transposed to give the sequence for the other.

The combination of the initialisation of table T and setting of P to 1G in the
left-to-right case has a matrix representation indexed by P and the T [d], and it
is entirely zero except that the P th column contains 0 in row P and d in the row
for T [d]. Its transpose is a matrix with only one non-zero row, namely that of
index P and with d in the column for T [d], which is clearly the matrix required
to achieve the product which is assigned to P after the loop in the right-to-left
case. Thus these two parts of the algorithms are also dual when defined suitably
in terms of the atomic operations. Lastly, the finalisation line of the left-to-right
case and the initialisation line of the right-to-left case are dual, because both are
given by the symmetric matrix, indexed by P and the T [d], which is all zeros
except for a 1 as the diagonal entry of index P . This completes a proof that
the formulations of the algorithms given in Fig. 1 are, in fact, dual because, in
the correspondence, the totality of composite operations in one is reversed and
transposed to give the operations of the other.

Strictly speaking, the definition of duality has been extended above to al-
gorithms which are described at the level of composite operations on registers
rather than the atomic ones of Defn. 2. However, as in Fig. 1, algorithms are
often presented at such a level. This presentation usually has to satisfy the I/O
requirements of normalised form in order that the transpose of the initialisation
stage of one algorithm yields the finalisation step of the other. This was done
for Fig. 1. As composite operations can always be decomposed into segements of
a normalised location-aware chain, this extended definition of duality between
algorithms means there is an underlying duality in the original sense of Defn. 4.

7 A New Compact Exponentiation Algorithm

In a typical resource-constrained embedded system, there is normally only room
for a very small table. This was the motivation for the division chain method

Dual Exponentiation 95

of Walter [11], given as the right-to-left algorithm in Figure 2. Typically it uses
only three registers: explicit T for the accumulating product and P providing
the right power of the plaintext input for each digit, and implicit working space
P ′ for temporary values. The idea is that pairs (ri, di) in the representation of
D have efficient addition chains for ri which include di as an intermediate value
so that P di can be computed cheaply en route to P ri . As in the table-based
algorithms of Fig. 1, the dual left-to-right algorithm given in Fig. 2 is derived
simply by reversing and transposing each step. Consequently, a duality proof
would follow the same pattern as for the table-based algorithms.

Inputs: M ∈ G, D = ((dn−1rn−2+dn−2)rn−3+ . . .+d1)r0+d0 ∈ N where di ∈ D
Output: MD ∈ G
———————————————————————————————–
read P ←M read P ←M
Initialisation: T ← P Initialisation: T ← 1G

P ← 1G for i← 0 to n−1 do in parallel {
for i← n−1 downto 0 do T ← T×P di

if i 6= n−1 then P ← P ri×T di if i 6= n−1 then P ← P ri }
else P ← T di Finalisation: P ← T

Finalisation: T ← 1G T ← 1G

return P return P

Fig. 2. Left-to-Right (left) and Right-to-Left (right) Compact Exponentiation.

The dual space-aware chain of atomic operations is still needed for each loop
iteration. The right-to-left loop iteration is achieved by a matrix indexed by P

and T , namely

[
ri 0
di 1

]
. Its transpose,

[
ri di
0 1

]
, leads to the dual code given for the

left-to-right case. As an example, an iteration with pair (5, 3) can be computed
with the addition chain 1+1 = 2; 1+2 = 3; 2+3 = 5. Using the three registers
P , T , and working space P ′, this can be achieved by the space-aware chain
P → P ′;P ′×P ′ → P ′;P×P ′ → P ;T×P → T ;P×P ′ →I P where the subscript

I indicates the operation with an initialisation to 1G. The dual sub-chain is
P → P ′;P×T → P ;P ′×P → P ′;P ′×P ′ → P ′;P×P ′ →I P . One can readily
check that the numbers of each type of operation are the same in this example:
one squaring, one multiplication with initialisation, two other multiplications
and one copying. Thus there is the effect of having a table which includes M3

without having to reserve the space for it or spend extra time computing it.
Previously it was unclear which digits could be generated this way in a left-to-
right algorithm as there was no obvious construction for the required addition
sub-chain. Duality solves that problem, as illustrated here with the pair (5, 3).

As the time efficiency is the same for both directions, it is possible to use
figures from [12] to see that the algorithm has very similar execution time to the
usual algorithms which use similar space (e.g. three registers). When D is fixed

96 C. D. Walter

for many exponentiations, the cost of the mixed base recoding can be amort-
ised over the lifetime of the key, and the times from [11] apply. This recoding
can be biased to make the best use of any composite operations on G, such as
a Frobenius map, which are cheaper than their components. Depending upon
where the multiplication by T occurs in the sub-chain, one can also apply one of
the double-and-add, triple-and-add or quintuple-and-add formulae for composite
elliptic curve operations [6, 10, 9]. Consequently, the new algorithm appears part-
icularly suitable for SSL servers re-using the same key many times. Of course,
the time is the same for both directions only using the coarse measurement of
counting doubles and adds on the elliptic curve. Use of the composite operations
makes modest but different improvements in time to both directions (see [1]).

Finally, a few further words on the efficiency of the code. In order to present
symmetric versions of the algorithms, there is some extra copying to have a
single register for I/O. This is unnecessary in software, but often required in
hardware. So, in Fig. 2, M might have been read directly into T instead of P in
the left-to-right algorithm, and, dually, the output returned from T rather than
P in the right-to-left algorithm. Deletion of the two copyings would still have left
dual algorithms computing the same values, although not symmetric, because
the matrix for the computation has a single non-zero value. Lastly, if the rules
of normalisation are followed when converting the recoding into a space-aware
chain then the multiplications by P di or T di are automatically removed when
di = 0, rendering unnecessary the condition di 6= 0 that appeared in Fig. 1.

8 Miscellaneous Space Issues for Dual Chains

Returning to general exponentiation algorithms, there may be cost issues in stor-
ing the mixed base representation (1). If D is given in binary but one is allowed
to choose a base ri which is not a power of 2, then the recoding must be done
from right to left. This can be done on-the-fly for a right-to-left exponentiation
method so that minimal additional storage is required for the recoding. However,
the left-to-right algorithm requires the complete recoding to be determined and
stored in advance. This may not be able to re-use space occupied by D if the
key must be kept, but it makes the left-to-right version use more space. On the
other hand, as in Figs. 1 and 2, the initial value of M is normally destroyed in
the right-to-left direction, but preserved in the left-to-right direction. So extra
storage space for input M may be required to retain it in the right-to-left case.

The way in which registers are used also tends to differ between the two direc-
tions. Only P is updated in the example left-to-right algorithms, whereas both
P and T are updated in the right-to-left cases. This suggests more data move-
ment is required in right-to-left algorithms, especially if the hardware can only
write to memory from one register. Thus, although dual exponentiation schemes
nominally use the same time and space, there are often relevant secondary space
and data movement issues to consider when duality is used in practice.

Dual Exponentiation 97

9 Conclusion

A straight-forward duality mechanism has been provided for addition chains
which enables exponentiation algorithms to process digits of the exponent in
either direction. In terms of counts of basic operations on the group in which
exponentiation takes place, and storage for such elements, this mechanism pre-
serves both the time and space usage of an exponentiation scheme. It thereby
improves on current methods which only address time issues. Time and space
differences between the two directions are mainly confined to the recoding phase
of an exponentiation and data preservation. The duality was illustrated using
Brauer’s and Yao’s algorithms, and applied to derive a new, compact left-to-right
algorithm. This algorithm can make use of composite elliptic curve operations
to achieve very competitive execution speeds, and is useful in both embedded
crypto-systems and SSL servers.

References

1. R. M. Avanzi, Delaying and Merging Operations in Scalar Multiplication: Appli-
cations to Curve-Based Cryptosystems, SAC 2006, LNCS 4356, Springer-Verlag,
2007, pp. 203–219.

2. D. J. Bernstein, Pippenger’s Exponentiation Algorithm,
http://cr.yp.to/papers/pippenger.pdf, 2002.

3. A. Brauer, On Addition Chains, Bull. Amer. Math. Soc., 45 (10), 1939, 736–739.
4. V. Dimitrov & T. Cooklev, Two Algorithms for Modular Exponentiation using

Non-Standard Arithmetics, IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E78-A(1), Jan 1995, pp. 82–87.

5. V. S. Dimitrov, G. A. Jullien & W. C. Miller, Theory and Applications for a Double-
Base Number System, Proc. ARITH 13, Monterey, CA, IEEE, 1997, pp. 44–51.

6. V. S. Dimitrov, L. Imbert & P. K. Mishra, Efficient and Secure Elliptic Curve
Point Multiplication using Double-Base Chains, ASIACRYPT 2005, LNCS 3788,
Springer-Verlag, 2005, pp. 59–78.

7. D. M. Gordon, A Survey of Fast Exponentiation Algorithms, Journal of Algorithms,
27, 1998, pp. 129–146.

8. D. E. Knuth, The Art of Computer Programming, vol. 2, “Seminumerical Algo-
rithms”, §4.6.3, 3rd Edition, Addison-Wesley, 1998, pp. 465–485.

9. P. Longa & A. Miri, New Composite Operations and Precomputation Scheme for
Elliptic Curve Cryptosystems over Prime Fields, PKC 2008, LNCS 4939, Springer-
Verlag, 2008, pp. 229–247.

10. P. K. Mishra & V. Dimitrov, Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication using Multibase Number Representation, Inform-
ation Security – ISC 2007, LNCS 4779, Springer-Verlag, 2007, pp. 390–406.

11. C. D. Walter, Exponentiation using Division Chains, Proc. ARITH 13, Monterey,
CA, IEEE, 1997, pp. 92–98.

12. C. D. Walter, MIST: An Efficient, Randomized Exponentiation Algorithm for Re-
sisting Power Analysis, CT-RSA 2002, LNCS 2271, Springer-Verlag, 2002, 53–66.

13. C. D. Walter, Sliding Windows succumbs to Big Mac Attack, CHES 2001, LNCS
2162, Springer-Verlag, 2001, pp. 286–299.

14. A. C.-C. Yao, On the Evaluation of Powers, SIAM J. Comput. 5(1), 1976, 100–103.

