
Is there Safety in Numbers
against Side Channel Leakage?

Colin D. Walter

Computation Department, UMIST
PO Box 88, Sackville Street, Manchester, M60 1QD, UK

www.co.umist.ac.uk

Abstract. The consequences of two recent attacks on RSA implementa-
tions are investigated. Each suggests the potential of increased weakness
in the embedded cryptosystem when key length is increased. One does
not realise this potential, but the other gives every indication of doing
so. In that case, when a single k-bit multiplier is used, increasing the
key length provides more data per key bit to attack. Consequently, al-
though the mathematical strength may be improved, the implementation
becomes less safe as key length is increased.

1 Introduction

So-called side channel attacks on smartcards to discover secret keys contained
therein follow a well-established tradition pursued by the military and secret
services, and exemplified by the long-running Tempest project of the US [24].
That project concentrated on detecting and obscuring electro-magnetic radiation
(EMR) and led to both heavily shielded monitors (those based on tubes) and
TV detector vans. EMR can be, and is, used to break smartcards – but with a
somewhat smaller aerial, one some 3mm long or less [5]. If correctly placed and
set up with sufficiently sensitive equipment, these can detect useful variations in
EMR non-invasively.

Side-channel leakage occurs through data dependent variation in the use of
resources such as time and hardware. The former results from branching in
the code or compiler optimisation [9, 2], and the latter manifests itself through
current variation as well as EMR [10, 13, 12]. For the RSA crypto-system [16],
conditional modular subtractions should be removed to make the time constant
[18, 17, 20]. Bus activity is the major cause of power variation, with a strong
relationship between it and the Hamming weight of the data on the bus. In-
structions and memory locations pass along the bus and, in the context of the
limited computational resources of a smartcard, potentially also large quantities
of data. This is partly solved by encryption of the bus [1, 11].

In all the popular crypto-systems used in practice where the key length is
variable, the greater the key length, the greater the mathematical strength of the
system against attack is believed to be. Indeed, a brute force attack will take
time exponential in the key length. However, longer key lengths require more



2 RSA Conference, Amsterdam, October 2001

computation for encryption and decryption. Hence there is more data which
leaks through timing, power and EMR variation. In an embedded crypto-system
to which an attacker has access, such as a smartcard, a valid question to ask
is whether or not the increased data from side channel leakage actually makes
longer keys more vulnerable to attack?

In the symmetric crypto-systems of DES, 3-DES and AES [22, 23], the block
length is fixed and the number of rounds is proportional to the key length (com-
paring DES with 3-DES, and AES with different choices for Nk). Hence the data
leakage is also proportional to the key length and the implementation strength
of the cipher is unlikely to decrease as key length increases.

However, public key cryptography such as in RSA, DSA, ECC, Diffie-Hellman
or El-Gamal [16, 21, 14, 3, 4], usually involves exponentiation in some form, where
the block length and exponent are proportional to the key length. Assuming
multiplication of double-length arguments takes four times the time for single-
length arguments on the same hardware, time is proportional to the cube of
the key length. Consequently, more leaked data is available per key bit as key
length grows. Indeed, if the multiplicative operations of the exponentiation are
performed sequentially using one of the standard algorithms [7, 8] and no form
of blinding, then there is more data per exponent bit for longer key lengths and
one should expect the implementation strength to decrease.

Two recent attacks do not appear to become more difficult as key length is
increased. Here we look at these in more detail: [20] is a timing attack which is
apparently independent of key length, whilst [19] is a differential power analysis
(DPA) attack in which key bits are determined independently with each using
all available data. In the former case, the attack is does, in fact, become more
difficult for larger keys. However, in the latter case the data available for deciding
each secret key bit is proportional to the cube of the key length, so that the attack
becomes easier with longer key lengths.

2 Security Model

The contexts for the two attacks [19, 20] are slightly different, but, for conve-
nience, in both cases we assume a similar scenario. In both cases, a smartcard is
performing RSA with limited resources and must be re-usable after the attack.
So the attacker is very limited in what he is allowed to do: he can only monitor
side channel leakage. He cannot choose any inputs, nor can he read inputs or
outputs, and he does not even know the “public” part of the key being used.
However, he is allowed to know the algorithms involved, perhaps as a result of
previous destructive studies of identical cards, insider information and publicity
material. His goal is to determine the secret exponent D, from which we assume
he can obtain the (public) modulus M , whether or not the Chinese Remainder
Theorem has been used.

For the timing attack [20] we assume the attacker can observe occurrences
of conditional subtractions of the modulus at the end of each long integer mul-
tiplicative operation with greater than evens chance of being correct. We also



C. D. Walter, Safety in Numbers 3

assume that the same exponent is used for all exponentiations which he observes.
For the DPA attack [19] we assume the attacker can observe power or EMR vari-
ations which bear some connection with the Hamming weights of the inputs to
a single multiplier. We also assume that the exponent may have been masked
by the addition of a (say 32-bit) random multiple of φ(M) [9]. In both cases,
any further assumptions about the hardware and the various algorithms used to
perform the exponentiation will be given later, as necessary.

3 Notation

As above, we assume an n-bit modulus M and private exponent D for the RSA
crypto-system. Ciphertext C has to be converted to plaintext CD mod M using
a small k-bit multiplier. Hence, except for the exponent, the n-bit numbers X
involved in the exponentiation are represented using base r = 2k and (non-

redundant) digits xi(0 ≤ i < s) in the range [0, r). Thus X =
∑s−1

i=0 xir
i.

The exponent D is represented with a different base, typically 2 or 4, de-
pending on the exponentiation algorithm. Exponentiation is usually performed
using the square-and-multiply algorithm, processing the exponent bits in either
order, or the generalisation of the most-to-least significant case, called m-ary
exponentiation [7, 8], in which D is represented in radix m using, say, t digits,
and some powers of C(i) = Ci mod M (1 ≤ i < m) which are pre-computed:

The m-ary (Modular) Exponentiation Algorithm

C(1) := C ;

For i := 2 to m-1 do

C(i) := C(i−1)×C mod M ;

P := C(dt−1) ;

For i := t-2 downto 0 do

Begin

P := Pm mod M ;

If di 6= 0 then P := P×C(di) mod M ;

End ;

Output: P = CD mod M

The modular products here are too large for the smartcard multiplier to per-
form in one operation. Typically a form of Montgomery’s modular multiplication
algorithm is used [15]. This gives an output R related to A×B mod M via a
power of r scaling factor:



4 RSA Conference, Amsterdam, October 2001

Montgomery’s Modular Multiplication Algorithm:

R := 0 ;

For i := 0 to s-1 do

Begin

R := R + ai×B ;

qi := (-r0m0
-1) mod r ;

R := (R + qi×M) div r ;

End

Output: R ≡ (A×B×r−s) mod M with 0 ≤ R < B+M

Here r−s is interpreted as the inverse of rs mod M . The digit products such as
ai×B are generated over s cycles by using the multiplier to compute each digit
by digit product ai×bj for 0 ≤ j < s from least to most significant digit of B,
propagating carries on the way so that a non-redundant representation can be
used.

The digit multiplier is usually an 8-, 16- or 32-bit multiplier, and the mod-
ulus size n is almost invariably a multiple of this. It follows that the output R,
bounded by B+M , can be expected to exceed s digits frequently. The overflow
digit or bit can be removed by an extra conditional subtraction or, less effi-
ciently, by computing with s+1 digits [18, 6]. Some implementations may desire
an output less than M , and those also must include a conditional subtraction.

4 A Timing Attack

In the timing attack [20], this conditional subtraction was assumed to take place
as necessary after each long integer multiplication, whether as a result of im-
posing an upper bound of s digits or of M . By observation, the conditional
subtraction is typically required for between 10% and 25% of multiplications
in the case of the digit bound, depending upon how close M is to its max-
imal size within its bit length bounds. This frequency is very helpful for an
attacker because if he can correctly detect the conditional subtraction with any
probability greater than 1

2 then, with sufficient observations, he can distinguish
operations for which the probabilities of a subtraction are different. Assuming
identical distributions for the inputs, the probabilities for squares and random
multiplications are different, and so the attacker can eventually tell them apart.
This means that the standard square-and-multiply exponentiation algorithm is
unsafe under the assumed security model. Each multiplication corresponds to a
bit which is set in the exponent. Hence the ones in the secret exponent can be
determined.

Let us elaborate. Various extra operations involving resetting counters and
reading or writing data etc. are carried out between the long integer operations
of an exponentiation, making the division points between them fairly clear in
a power trace [13]. Consequently, any variation in the number of clock cycles
is clearly distinguishable. Even with preventative measures in place, we might



C. D. Walter, Safety in Numbers 5

reasonably assume the attacker is able to distinguish the conditional subtractions
if he has sufficiently sensitive equipment.

We need also to assume that the same exponentiation scheme, say square-
and-multiply, is used repeatedly with the same exponent. Then, after a number of
observations of exponentiations, the attacker can determine approximate prob-
abilities for the conditional subtraction after each long integer operation in the
exponentiation.

Inspection of Montgomery’s algorithm shows that the magnitude of the out-
put is essentially determined by the magnitude of the inputs. For example, the
most significant output digit is as×bs plus a component which is essentially ran-
dom because of the multiple of M which has been added into it. In fact, the
output lies between ABr−s and ABr−s+M . Under the reasonable assumption
that outputs are uniformly distributed over this interval as A and B vary, one
can take ABr−s+M/2 as the expected output. Then for a given distribution of
A and B, it is possible to calculate the probability of this output exceeding s
digits, i.e. the probability of the conditional subtraction occurring.

There are two cases to consider in the square-and-multiply algorithm: the
random, independent inputs to a multiplication and the equal inputs to a square.
In [20], integrating the product of the density functions for A and B over appro-
priate ranges provided an expression with a coefficient of 1

4 for the probability of
a conditional subtraction, whilst integrating the square of the density functions
for A provided a similar expression but with a coefficient of 1

3 . In the case of M
being close to its maximal value, this showed that conditional subtractions can
be expected in about 1

4 of all multiplications, but in around 1
3 of all squares.

Thus the attacker can be expected to distinguish them and obtain the secret
exponent very quickly if his equipment is good enough.

In essence this argument is sound, but the detail is less easy to provide ac-
curately. For example, each multiplication may have the original ciphertext C
as one input and this may not be distributed in a known manner. Furthermore,
the other input will be the output from a previous squaring and therefore not be
distributed in the same way as the output from a random product because of the
more frequent conditional subtractions just described. Indeed, if an exponent bit
is zero, the next multiplication will have an input which is a fourth power. This
will have yet another distribution. Thus, the previous history of the inputs to a
multiplication or squaring affects the liklihood of the conditional subtraction tak-
ing place. However, the more recent the operation, the stronger its influence on
the conditional subtraction. Hence, unless the attacker is extremely unlucky, he
should manage to determine each exponent bit precisely because the frequencies
of subtractions should be clearly different. Furthermore, he can run simulations
on his estimate for the exponent and make adjustments if the frequencies are
different from what he measures on the card. Only the most significant bits of M
have a significant effect on the probabilities for a given history of the arguments.
Under the assumption that the exponent is unchanged on successive observa-
tions, and the public encryption exponent E is a standard, small choice such as
3, D will be a known, simple, linear function of φ(M). As φ(M) and M share



6 RSA Conference, Amsterdam, October 2001

the same top bits, the tops bits of M can be obtained from those of D and vice
versa. Hence, after trying possibilities for the topmost bits of D exhaustively if
necessary, the attacker will very soon be able to determine subsequent exponent
bits reliably by comparison with a simulation if any unusual circumstances arise.

Such variations in distributions allow a similar attack on m-ary exponentia-
tion, at least for the small m which are the only practical values for a smartcard.
However, the most distinctive distributions are obtained by partitioning obser-
vations into subsets according to whether or not a conditional subtraction has
occurred for a particular operation. In particular, for m = 4 the values of C(1),
C(2) and C(3) are pre-computed using Montgomery multiplications, the first
being the result of introducing the Montgomery scaling factor [18]. So eight dif-
ferent subsets can be formed. These behave sufficiently distinctly for a different
but characteristic vector of frequencies to be obtained for different exponent
digits. According to whether the exponent digit has value 0, 1, 2 or 3, no mul-
tiplication or a multiplication by C(1), C(2) or C(3) takes place. The vector of
frequencies determines which digit is correct, as is illustrated by the figures in
[20]. Hence the secret exponent D can be reconstructed by the attacker.

5 Increased Key Length

Suppose the key length is increased. Does the attack become more or less diffi-
cult? The value of s is increased, but similar computations with density functions
are going to determine similar constants again, namely 1

4 for multiplications and
1
3 for squares. Hence, it should be equally possible to determine whether or not
an operation is a square or a multiply if occurrences of conditional subtractions
can be detected equally easily. Of course, O(s2) clock cycles have to be counted
for each long integer multiplication, but the attacker can reasonably be expected
to be able to observe individual clock cycles and hence spot the variations that
arise from conditional subtractions, which take O(s) cycles to perform. So we
should assume conditional subtractions are observed with an accuracy indepen-
dent of the key length, and that the same is true for determining squares and
exponent digits.

However, there are more exponent digits to determine. Suppose each is cho-
sen correctly with probability p. Then pt is the probability of determining D
correctly, and this clearly decreases as the exponent size t is increased. More
precisely, the frequency of subtractions for a particular operation enables an ac-
curate estimate for the correctness of the deduced exponent digit to be made. If
errors are made, this enables alternative choices to be ranked and the most likely
tested for correctness. Overall, given an equal number of observations, exponents
of any length can be expected to yield similar distributions of frequency counts.
Hence, if p is the (geometrical) average probability of having a correct exponent
digit, pt will indeed provide the probability of the whole exponent being correct.
In particular, doubling the key length will square the probability of correctness,
and square the average number of different exponents that have to be considered
before the correct one is found. Consequently, the difficulty is still exponential in



C. D. Walter, Safety in Numbers 7

the length of the key, although when p is close to 1 there is no longer any reason
to expect that an infeasible amount of computing is still required to break the
card.

Needless to say, this emphasises the need for countermeasures. There is a
standard and easy solution which prevents this attack, to found in [9]. For each
exponentiation a fresh 32-bit random multiple of φ(M) is added to D and the
result used as the exponent instead of D. The attacker is then unable to combine
successive observations in the way required required for the attack. For typical
exponent lengths the extra cost is under 10% plus the time for generating the
random word.

Incidentally, one might also ask what effect there is in increasing m if the m-
ary exponentiation scheme is used. The number of observation subsets provided
by the pre-computations is 2(m−1). Thus the vector of frequencies provides
much more information as m increases, even if the total number of observations
is fixed. So individual digits values should be easier to deduce correctly if all
other parameters, such as key length, are kept constant.

6 A DPA Attack

The other attack considered here is one based on differential power analysis
(DPA) [19]. Power use varies with the amount of switching activity in a circuit.
In the case of a multiplier, simulations by the author have confirmed that the
average number of gates switched from a random initial state during a multiply-
accumulate operation is linear in the sum of the Hamming weights of the inputs.
With a combination of power traces and EMR measurements from a carefully
positioned probe [5], we will assume that the attacker can obtain some data,
however minimal, which is related to the sum of the Hamming weights of these
inputs. His problem is to combine these in a manner which reveals the Hamming
weights with sufficient accuracy for him to deduce the digits of the exponent.

In m-ary exponentiation, the pre-computed powers C(i) are used as multipli-
ers every time the digit i appears in the exponent. As with the previous attack,
identifying this multiplier leads to a determination of the secret exponent D.
Consider traces from a single, long integer multiplication A×C(i) during the ob-
servation of one exponentiation. The calculation requires every product of digits
aj×ck to be computed. For each k, the power or EMR traces are averaged as j
ranges over its s values. In general, the digits of A are sufficiently random for
this averaging process to provide a trace which is reasonably indicative of the
Hamming weight of ck. As key length s increases, this average improves. Con-
catenating these averaged traces together provides a trace which is characteristic
of the particular C(i) which has been used. Roughly speaking, it corresponds to
a vector of the Hamming weights of the digits of C(i). The Euclidean distance
between any pair of such vectors for C(i) and C(i′) with i 6= i′ has a very
small variance compared to its average, so that the pair are almost invariably
clearly separated. Thus, the attacker can expect to distinguish the traces he has
formed from different multipliers C(i) and also to identify those formed using the



8 RSA Conference, Amsterdam, October 2001

same multiplier C(i). From different multiplications during the exponentiation,
he groups together traces which are close together under the Euclidean metric.
The members of each such group should correspond to the use of the same ex-
ponent digit, and the different groups should correspond to different exponent
digits. Comparing every pair of traces provides confirmation of such decisions
already made because the traces will usually be clearly separated or clearly close
together. The squaring operations can be identified in a similar way: they turn
out to have traces which are not close to any others. Moreover, a fixed pattern
of multiplications must be followed: a repetition of log2m squarings followed by
an optional multiplication by some C(i). There are (m−1)! ways of associating
the correct digits to each multiplication to obtain the exponent D, and each of
these can be tried in turn for correctness, but it is also possible to determine the
correct association from the pre-multiplications since C(i) is used as a multiplier
to form C(i+1). From a single exponentiation the attacker can therefore hope to
deduce the exponent D.

As in the timing attack, the distance between traces can be used to predict
the accuracy of the assignment of an exponent digit. The most likely alternatives
can then be constructed and tested until the correct value of D is ascertained.

7 Increased Key Length

The effect of increasing the key length t in this attack has already been hinted
at. Increasing t, and hence s, improves the trace averaging process. Furthermore,
the concatenated traces have a length proportional to s, and therefore provide
more data for comparison with other traces. This makes it easier to identify
traces corresponding to the same exponent digit and distinguish those derived
from different digits. Further still, the larger number O(t2) of pairs of traces
for comparison increases the probability that positions corresponding to equal
exponent digits will be correctly associated.

Overall, the effect of doubling the key length, say, is to double the length of
the trace as well as increase its accuracy. This alone can be expected to increase
the probability p of a correct association for a single digit to at least

√
p, so that,

following the same argument as for the timing attack, the total probability pt of
deducing the correct exponent is not increased. Taking into account the larger
number of pairs of traces which corroborate earlier choices, it is clear that the
longer key length may well improve the chances of breaking the card.

Figures from a simulation of 8-ary exponentiation with a 32-bit multiplier
and various key lengths are reproduced from [19] and extended in Table 1. The
simulation was based on the number of gates which were switched in the multi-
plier after random initialisation and this was used to form traces of gate switch
counts. The averages and standard deviations for the distances between traces
corresponding to the same multiplier and to different multipliers were computed
for 5×105 pairs in each column. Comparing two traces corresponding to the
same multiplier, the average separation is proportional to the key length, as one
would expect, as is the standard deviation. However, the average separation be-



C. D. Walter, Safety in Numbers 9

tween traces representing different multipliers increases much faster: threefold
per doubling of key length over the given range. In contrast, the standard devia-
tion again appears to be linear in the key length. Consequently, for 256-bit keys
the two averages are about 4.4 SDs apart, this rises to 6.0 for 512-bit keys, and
then to 11.4 for 1024-bit keys. A quick look at normal distribution tables shows
that the probability of being closer to the correct average goes up much faster
than the square root as key length is doubled: p256 = 0.9861, p512 = 0.99865 and
p1024 = 1 − 0.57×10−8 satisfy p256 < p512

2 and p512 < p1024
2. This probability

is then further improved because of the increased number of pairs of traces that
can be compared. The other columns of the table exhibit the same behaviour.
Thus, at least in the simulation, it becomes much easier to deduce all exponent
digits as the key length increases. Indeed, the percentage of errors in the simula-
tion quickly decreases to zero over the range of the table. This confirms that it
should become easier to distinguish distinct multipliers as key length increases,
with a sufficient improvement to enable the whole key to be recovered much
more easily.

Length M (bits) 96 128 192 256 384 512 768 1024

Av btwn same 470 798 1263 1529 2366 3750 4501 6246
SD btwn same 257 347 681 885 1403 2386 2535 3612
Av btwn diff 1224 2120 4973 5890 11753 17896 32594 53070
SD btwn diff 442 585 1276 1108 2412 2279 4646 4581
%age errors 57.24 40.20 5.307 0.9284 0.1155 0.2819 0.0000 0.0000
SDs btwn avs 2.16 2.84 3.79 4.4 4.9 6.0 7.8 11.4
pt 0.8596 0.9220 0.9710 0.9861 0.9929 0.9986 .99995 0.999..

Table 1. Gate Switch Statistics for 32-bit multiplier with m = 8.

8 Counter-measures

The counter-measure proposed for the timing attack, namely randomly varying
the exponent on each exponentiation, does not work here because this DPA
attack is applied to a single exponentiation. However, it relies on a known order
for the digit products being formed as well as the repeated use of the same
multipliers, which indicate the exponent digits. Hence the digit products could
be randomly re-ordered, although the cost of this is substantial because of losing
the convenience of sequential carry propagation. Also, the square-and-multiply
algorithm could be employed, but in the form which processes the digits starting
from the least significant. This avoids re-using the same multiplier, but requires
more writing of results to memory. Such writes may reveal whether or not a
multiplication is being performed, and hence provide the bits of the exponent.

However, the best counter-measure may just be to pay for a larger multiplier.
This reduces the number of digits over which averages are taken and reduces
the number of concatenated traces, i.e. it reverses the effect of increased key



10 RSA Conference, Amsterdam, October 2001

length on the traces, but allows t to be increased. Hence the probability of
a successful attack can be reduced. Moreover, with larger numbers of words
sharing the same Hamming weight, it is no easier to use the Euclidean metric
to separate the different multipliers. Further, one might use two multipliers in
parallel. Montgomery’s modular multiplication algorithm naturally uses two.
The power used by one might successfully shield observation of the power used
by the other, and an EMR probe may not be precise enough to distinguish
between them. Thus safety can be bought, but at a price.

9 Conclusion

Two attacks on smartcards have been outlined, one a timing attack and the other
a power analysis attack. The effect of increasing the key length was studied for
each, and it provides improved security against the timing attack. However, every
indication shows that the DPA attack becomes easier since sufficiently more
data is available to guide each decision. Current standard algorithmic counter-
measures do not provide a very satisfactory solution to this problem. However,
investing in one or more larger multipliers on the smartcard certainly makes the
attack more difficult.

References

1. R. M. Best, Crypto Microprocessor that Executes Enciphered Programs, U.S. Patent
4,465,901, 14 Aug. 1984.

2. J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater & J.-L. Willems,
A practical implementation of the Timing Attack, Proc. CARDIS 1998, Lecture
Notes in Computer Science, 1820, Springer-Verlag, 2000, pp. 175–190.

3. W. Diffie & M. E. Hellman, New Directions in Cryptography, IEEE Trans. Info.
Theory, IT-22, no. 6, 1976, pp. 644–654.

4. T. El-Gamal, A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms, IEEE Trans. Info. Theory, IT-31, no. 4, 1985, pp. 469–472.

5. K. Gandolfi, C. Mourtel & F. Olivier, Electromagnetic Analysis: Concrete Re-
sults, Cryptographic Hardware and Embedded Systems (Proc CHES 2001), Ç.
Koç, D. Naccache & C. Paar editors, Lecture Notes in Computer Science (to ap-
pear), Springer-Verlag, 2001.

6. G. Hachez & J.-J. Quisquater, Montgomery exponentiation with no final subtrac-
tions: improved results, Cryptographic Hardware and Embedded Systems (Proc
CHES 2000), C. Paar & Ç. Koç (editors), Lecture Notes in Computer Science,
1965, Springer-Verlag, 2000, pp. 293–301.

7. D. E. Knuth, The Art of Computer Programming, vol. 2, Seminumerical Algo-
rithms, 2nd Edition, Addison-Wesley, 1981, pp. 441–466.

8. Ç. K. Koç, Analysis of Sliding Window Techniques for Exponentiation, Computers
and Mathematics with Applications, 30, no. 10, 1995, pp.17–24.

9. P. Kocher, Timing attack on implementations of Diffie-Hellman, RSA, DSS, and
other systems, Proc. Crypto 96, N. Koblitz (editor), Lecture Notes in Computer
Science, 1109, Springer-Verlag, 1996, pp. 104–113.



C. D. Walter, Safety in Numbers 11

10. P. Kocher, J. Jaffe & B. Jun, Differential Power Analysis, Advances in Cryptology
− Crypto ’99, M. Wiener (editor), Lecture Notes in Computer Science, 1666,
Springer-Verlag, 1999, pp. 388–397.

11. M. G. Kuhn Cipher Instruction Search Attack on the Bus-Encryption Security
Microcontroller DS5002FP, IEEE Transactions on Computers, 47, No. 10, October
1998, pp. 1153–1157

12. R. Mayer-Sommer, Smartly Analyzing the Simplicity and the Power of Simple
Power Analysis on Smartcards, Cryptographic Hardware and Embedded Systems
(Proc CHES 2000), C. Paar & Ç. Koç editors, Lecture Notes in Computer Science
1965, Springer-Verlag, 2000, pp. 78–92.

13. T. S. Messerges, E. A. Dabbish, R. H. Sloan, Power Analysis Attacks of Modular
Exponentiation in Smartcards, Cryptographic Hardware and Embedded Systems
(Proc CHES 99), C. Paar & Ç. Koç editors, Lecture Notes in Computer Science
1717, Springer-Verlag, 1999, pp. 144–157.

14. V. Miller, Use of Elliptic Curves in Cryptography, Proc. CRYPTO ’85, H. C.
Williams (editor), Lecture Notes in Computer Science 218, Springer-Verlag, 1986,
pp. 417–426.

15. P. L. Montgomery, Modular Multiplication without Trial Division, Mathematics of
Computation, 44, no. 170, 1985, pp. 519–521.

16. R. L. Rivest, A. Shamir & L. Adleman, A Method for obtaining Digital Signatures
and Public-Key Cryptosystems, Comm. ACM, 21, 1978, pp. 120–126.

17. W. Schindler, A Timing Attack against RSA with Chinese Remainder Theorem,
Cryptographic Hardware and Embedded Systems (Proc CHES 2000), C. Paar &
Ç. Koç editors, Lecture Notes in Computer Science 1965, Springer-Verlag, 2000,
pp. 109–124.

18. C. D. Walter, Montgomery Exponentiation Needs No Final Subtractions, Electron-
ics Letters, 35, no. 21, October 1999, pp. 1831–1832.

19. C. D. Walter, Sliding Windows succumbs to Big Mac Attack, Cryptographic Hard-
ware and Embedded Systems (Proc CHES 2001), Ç. Koç, David Naccache &
Christof Paar (editors), Lecture Notes in Computer Science, Springer-Verlag, to
appear.

20. C. D. Walter & S. Thompson, Distinguishing Exponent Digits by Observing Mod-
ular Subtractions, Topics in Cryptology − CT-RSA 2001, D. Naccache (editor),
Lecture Notes in Computer Science 2020, Springer-Verlag, 2001, pp. 192–207.

21. Digital Signature Standard (DSS), FIPS 186, http://csrc.nist.gov/publications/,
US National Institute of Standards and Technology, May 1994.

22. Data Encryption Standard (DES), FIPS 46-3, http://csrc.nist.gov/publications/,
US National Institute of Standards and Technology, October 1999.

23. Advanced Encryption Standard (AES), FIPS draft, http://csrc.nist.gov/ publica-
tions/, US National Institute of Standards and Technology, 2001.

24. Index of National Security Telecommunications Information Systems Security Is-
suances, NSTISSC Secretariat, US National Security Agency, 9 January 1998.


