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Abstrat. In smartard enryption and signature appliations, random-

ized algorithms an be used to inrease tamper resistane against attaks

based on averaging data-dependent power or EMR variations. Oswald

and Aigner desribe suh an algorithm for point multipliation in ellip-

ti urve ryptography (ECC). Assuming an attaker an identify and

distinguish additions and doublings during a single point multipliation,

it is shown that the algorithm is inseure for repeated use of the same se-

ret key without blinding of that key. Thus blinding should still be used

or great are taken to minimise the di�erenes between point additions

and doublings.
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1 Introdution

Side hannel attaks [6, 7℄ on embedded ryptographi systems show that sub-

stantial data about seret keys an leak from a single appliation of a rypto-

graphi funtion through data-dependent power variation and eletro-magneti

radiation [12, 13℄. This is partiularly true for rypto-systems whih use the

omputationally expensive funtion of exponentiation, suh as RSA, ECC and

DiÆe-Hellman. Early attaks required averaging over a number of exponentia-

tions [9℄ to extrat meaningful data, but improved tehniques mean that single

exponentiations using traditional algorithms may be inseure. In partiular, it

should be assumed that the pattern of squares and multiplies an be extrated

fairly aurately from side hannel leakage, perhaps by using Hamming weights

to identify operand re-use. Where the standard binary \square-and-multiply"

algorithm is used, this pattern reveals the seret exponent immediately.

In this ontext, Oswald and Aigner proposed a randomized point multiplia-

tion algorithm [10℄ for whih there is no bijetion between salar key values and

sequenes of urve operations. They randomly swith to a di�erent proedure

for whih multipliations appear to our instead for zero bits but not for one

bits. This alternative orresponds to a standard reoding of the input bits to

remove long sequenes of 1s and introdues other non-zero digits suh as

�

1. On
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the one hand, the pattern of squares and multipliations is no longer �xed, so

that averaging power traes from several exponentiations does not make sense,

and, on the other hand, there is ambiguity about whih digit value is assoiated

with eah multipliation.

This artile analyses the set of randomized traes that would be generated by

repeated re-use of the same unblinded key k. By aligning orresponding doublings

in a number of traes, the possible operation sequenes assoiated with bit pairs

and bit triples of the seret key k an be extrated. With only a few traes

(ten or so) this provides enough information to determine half the bits of k

unequivoally, and the rest with a very high degree of ertainty.

Previous work in this area inludes [11℄ and [14℄. In [11℄ Oswald takes a similar

but deterministi algorithm and shows how to determine a spae of possible keys

from one sequene of urve operations, but not how to ombine suh results

from di�erent sequenes. Here randomization minimises the inter-dependene

between onseutive operations and so it is unlear whether or not her tehniques

lead to an intratable amount of omputing. Okeya & Sakurai [14℄ treat the

simple version of the randomized algorithm and sueed in ombining results

from di�erent multipliations by the same key. They require the key k to be re-

used 100+ log

2

k times. Here we treat the more omplex version of the algorithm

in an extended form whih might inrease seurity. The analysis of Okeya &

Sakurai is inappliable here beause it depends on a �xed �nite automaton state

ourring after proessing a zero bit. However, using new methods we �nd that a)

measurements from only O(10) uses of the seret key reveal the key by applying

theory whih onsiders pairs of bits at a time, b) software whih onsiders longer

sequenes of bits an proess just two uses to obtain the key in O(log k) time,

and ) for standard key lengths and perfet identi�ation of adds and doubles,

a single use will dislose the key in a tratable amount of time. In addition, our

attak seems less suseptible to error: key bits are dedued independently so

that any inorret dedutions a�et at most the neighbouring one or two bits.

In omparison, the attak of Okeya & Sakurai reovers bits sequentially, making

reovery from errors more omplex.

Although only one algorithm is studied here, a similar overall approah an

be used to break most randomized reoding proedures under the same ondi-

tions. The two main properties required are: i) after a given sequene of point

operations, the unproessed part k

0

of the key an only have one of a small,

bounded number of possible values (determined from k by the length of the

operation sequene but independent of other hoies); and ii) it is possible to

identify an assoiated subset of trae suÆxes for whih all members orrespond

to the same value of k

0

. These also hold for the algorithm proposed by Liardet

& Smart [8℄, whih uses a sliding window of random, variable width. They seem

to be the key properties required in [16℄ to demonstrate similar weaknesses in

that algorithm.

Several ounter-measures exist against this type of attak. As well as stan-

dard blinding by adding a random multiple of the group order to the exponent,
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di�erent algorithms an be employed, suh as [3, 5℄. Moreover, formulae for point

additions and doublings an be made indistinguishable [1, 2, 4, 8℄.

2 The Oswald-Aigner Exponentiation Algorithm

This setion ontains a brief outline of the Oswald-Aigner algorithm [10℄ in terms

of the additive group of points on an ellipti urve E. Rational integers are

written in lowerase while points on the urve are written in apitals and Greek

haraters denote probabilities. The algorithm omputes the point P = kQ for

a given positive integer k (the seret key) and a given point Q on E.
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Fig. 1. Finite automaton for an extension of the algorithm. rb is a random bit.

The algorithm randomly introdues alternative re-odings to the represent-

ation of k. It an be viewed as pre-proessing bits of k from right to left into a

new digit set f�1; 0;+1;+2g. Then the resulting sheme for point multipliation

an be performed in either diretion. The onversion uses a arry bit set initially

to 0. When this bit is summed with the urrent bit of k, the result 0, 1 or 2 an

be re-oded in di�erent ways: 0 always gives a new digit 0 with arry 0; 1 an

give either new digit 1 and arry 0, or new digit

�

1 with arry 1; and 2 gives either

new digit 0 and arry 1, or new digit 2 and arry 0. Fig. 1 illustrates this as a

�nite automaton for a slight extension of the original right-to-left algorithm. It

has 4 states, numbered 0 to 3 with the arry being 1 if, and only if, the state is

2. For the transition from state 2 to state 1, the normal order of doubling and

adding is reversed. This ahieves the proessing for digit value 2. The extension

here allows a new transition from state 0 to state 2; the original algorithm is the
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speial ase in whih the random bit rb = 1 always for state 0. The extension

also allows the random bits to be biased for eah state. However, if the same dis-

tribution of random bits is used for eah of the states 0, 1 and 3, the automaton

simpli�es to just two states, obtained by merging states 0, 1 and 3.

Figure 2 provides equivalent ode for the assoiated right-to-left point multi-

pliation. A left-to-right version is also possible, and an be attaked in the same

way.

P  O ; /* O is the zero of the ellipti urve */

State  0 ;

While k > 0 do

{

If (k mod 2) = 0 then

ase State of

{

0,1,3 : Q  2Q ; State  0 ;

2 : P  P+Q ; Q  2Q ; State  3 ;

}

else

ase State of

{

0,1,3 : If rb = 0 then /* rb is a Random Bit */

{ P  P-Q ; Q  2Q ; State  2 }

else

{ P  P+Q ; Q  2Q ; State  1 } ;

2 : If rb = 0 then /* rb is a Random Bit */

{ Q  2Q ; P  P+Q ; State  1 }

else

{ Q  2Q } ;

} ;

k  k div 2 ;

} ;

If State = 2 then P  P+Q ;

Fig. 2. Oswald & Aigner's randomized signed binary exponentiation (extended).

3 EÆieny Considerations

De�nition 1. Let �, �,  and Æ be the probabilities that the random bit rb is

hosen to be 1 when the urrent state is 0, 1, 2 or 3 respetively.

These probabilities an be hosen to improve eÆieny or, as we shall see, se-

urity. For a key k whose bits are seleted independently and at random from a

uniform distribution, the matrix of transition probabilities between states of the
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automaton is then

2

6

6

6

6

6

4

1

2

1

2

0

1

2

�

2

�

2

1�

2

Æ

2

1��

2

1��

2



2

1�Æ

2

0 0

1

2

0

3

7

7

7

7

7

5

Lemma 1. The transition matrix has an eigen-vetor (

1

2

��;

1

2

�2�, 2�; �) where

� =

2����

12�2��4��4+2Æ

. Its elements are the probabilities assoiated with eah state.

Moreover, 0 � � �

1

4

.

This is an easy exerise for the reader. Taking the dot produt of this eigen-

vetor with the vetor (

1

2

;

1

2

; 1�

1

2

;

1

2

) of average additions assoiated with eah

state provides the expeted number of additions per bit:

1

2

+(1�)�. The number

of doublings is onstant at one per bit. So, to minimise the total time we require

(1�)� = 0, i.e. (1�)(2����) = 0, i.e. disallow either the transition from state

2 bak to state 1, or both transitions to state 2 from states 0 and 1. Avoiding these

extremes provides greater randomness. In partiular, � and/or � should be kept

away from 1 so that states 2 and 3 are reahable. In the limit as ��Æ!1 (whih

optimises eÆieny), on average there is half an addition per bit of k. Thus, a

typial addition hain has a little over

1

2

log

2

k additions (or subtrations). Even

a modest bias towards eÆieny, suh as taking � = � =  = Æ �

3

4

, hanges

this by just 2% or less.

4 The Attak

4.1 Initial Hypotheses, Notation & Overview of the Attak

The attak here assumes suÆiently good monitoring equipment and a suÆ-

iently weak implementation. Spei�ally it is assumed that:

{ Adds and doublings an always be identi�ed and distinguished orretly in

side hannel leakage from a single point multipliation; and

{ Side hannel traes are available for a number of di�erent uses of the same,

unblinded key value.

For ease in alulating probabilities, we assume adds and doublings an always

be distinguished. Similar results hold if this is only usually the ase. By the �rst

hypothesis,

{ every side-hannel trae tr an be viewed as a word over the alphabet fA;Dg

where A denotes the ourrene of an addition andD that of a doubling. Here, as

expeted, the trae is written with time inreasing from left to right. However,

this is the opposite of the binary representation of the seret key k whih is

proessed from right to left, so that the re-oding an be done on the y (Fig. 2).

For example, if the mahine were to yle round only states 0 and 1 giving the
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sequene of operations for square-and-multiply exponentiation, then the trae

would be essentially the same as the binary, but reversed: every ourrene of

0 would appear as D, and every ourrene of 1 would appear as AD. So the

binary representation 11001 would generate the trae ADDDADAD. There is

one D for every bit, and we index them to orrespond:

De�nition 2. The position of an instane of D in a trae is the number of

ourrenes of D to its left.

Thus, the leftmost D of ADDDADAD has position 0 and arises from proessing

the rightmost bit of 11001, whih has index 0.

The attak onsists of a systemati treatment of observations like the follow-

ing. The only transition whih plaes D before rather than after an assoiated

ourrene of A is the transition (21). Hene, every ourrene of the substring

DAAD in a trae tr orresponds to traversing transition (21) then (12) or (11) in

the �nite automaton. This must orrespond to proessing a bit 1 to reah state

2, and then two further 1 bits. The trae an be split between the two adjaent

As into a pre�x and a suÆx. There is a orresponding split in the binary repre-

sentation of the seret key k suh that the suÆx of k has a number of bits equal

to the number of Ds in the pre�x of tr. This enables the position of the substring

111 to be determined in k. Moreover, by the next lemma, most ourrenes of

111 an be loated in this way if enough traes are available: DAAD appears

exatly when the middle 1 is represented by the transition (21).

Lemma 2. If 11 ours in the binary representation of k then the probability

of the left-hand 1 being represented by transition (21) in a trae for k is � =

4�(1�).

Proof. 4� is the probability of being in state 2 as a result of the right-hand 1

and 1� is the (independent) probability of seleting transition (21) next. ut

4.2 Properties of the Traes

Figure 3 lists the transitions and operation sequenes whih an our for eah

bit pair, inluding the probability of eah. It assumes that initial states have the

probabilities determined by Lemma 1, and that neighbouring bits are unknown.

The �gure enables one to see whih bit pairs an arise from given patterns in a

trae, and to alulate their probabilities:

Lemma 3. Let k

i

denote the bit of k with index i, and � be as in Lemma 1.

Then,

i) For a given trae, if the Ds in positions i and i+1 are not separated by any

As, then the bit pair k

i+1

k

i

is 00 with probability (2�2�(1�))

�1

, whih is at

least

1

2

. If the Ds are separated by one or more As in any trae, then the bit pair

is ertainly not 00.

ii) For a given trae, if the Ds in positions i and i+1 are separated by one A,

then the bit pair k

i+1

k

i

is 10 with probability

1

2

. If the Ds are separated by no
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As or two As in any trae, then the bit pair is ertainly not 10.

iii) For a given trae, if the Ds in positions i and i+1 are separated by two As,

then the bit pair k

i+1

k

i

is ertainly 11. The probability of two As when the bit

pair is 11 is 2�(1�), assuming bit k

i�1

is unknown.

iv) For a set of n traes, suppose the Ds in positions i and i+1 are separated by

no As in some ases, by one A in some ases, and by two As in no ases. Then

the bit pair k

i+1

k

i

is 01 with probability (1+(1�2�(1�))

n

)

�1

.

Bit Operation State Probabilities;

Pair Patterns Sequenes given the bit pair

00 D:D 000; 100; 300 1�2�

AD:D 230 2�

10 D:AD 001; 002

1

2

��

D:AD 101; 102

1

2

�2�

AD:AD 231; 232 2�

D:AD 301; 302 �

01 AD:D; AD:AD 010; 023 (

1

2

��)�; (

1

2

��)(1��)

AD:D; AD:AD 110; 123 (

1

2

�2�)�; (

1

2

�2�)(1��)

DA:D; D:AD 210; 223 2�(1�); 2�

AD:D; AD:AD 310; 323 �Æ; �(1�Æ)

11 AD:AD; AD:AD 011; 012 (

1

2

��)��; (

1

2

��)�(1��)

AD:DA; AD:D 021; 022 (

1

2

��)(1��)(1�); (

1

2

��)(1��)

AD:AD; AD:AD 111; 112 (

1

2

�2�)�

2

; (

1

2

�2�)�(1��)

AD:DA; AD:D 121; 122 (

1

2

�2�)(1��)(1�); (

1

2

�2�)(1��)

DA:AD; DA:AD 211; 212 2�(1�)�; 2�(1�)(1��)

D:DA; D:D 221; 222 2�(1�); 2�

2

AD:AD; AD:AD 311; 312 �Æ�; �Æ(1��)

AD:DA; AD:D 321; 322 �(1�Æ)(1�); �(1�Æ)

Fig. 3. All possible operation sequenes for all bit pairs, and their probabilities given

the bit pair ours. (Bit pairs are proessed right to left and operations left to right.)

Proof. i) First, by inspetion of the �nite automaton, the only possible opera-

tion sequenes for 00 are ADD and DD. So the Ds are always adjaent. The

intervention of an A will prove that the bit pair is not 00.

Suppose there is no intervening A between the two spei�ed Ds. Using Figure

3, if the bit pair is 00 then the probability of this is �

00

= 1; if the bit pair is

10 then the probability is �

10

= 0; if the bit pair is 01 then the probability is

�

01

= (

1

2

��)�+(

1

2

�2�)�+�Æ; and if the bit pair is 11 then the probability is

�

11

= (

1

2

��)(1��)+(

1

2

�2�)(1��)+ 2�+�(1�Æ). Thus, the orret dedution

of 00 is made with probability

�

00

=(�

00

+�

10

+�

01

+�

11

) = 1=(2�2�(1�)) �

1

2

.
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ii) Similarly, from Figure 3 the bit pair 10 must always inlude the operation A

one between the two ourrenes of D, but this is not the ase for any other

bit pair. Thus the absene of an A, or the presene of two As, guarantees the bit

pair is not 10. However, suppose there is exatly one A between the spei�ed Ds.

By Figure 3, if the bit pair is 00 then the probability of this is �

0

00

= 1��

00

= 0;

if the bit pair is 10 then the probability is �

0

10

= 1��

10

= 1; if the bit pair

is 01 then the probability is �

0

01

= 1��

01

; and if the bit pair is 11 then the

probability is �

0

11

= 1��

11

�2�(1�). Thus, the orret dedution of 10 is made

with probability

�

0

10

=(�

0

00

+�

0

10

+�

0

01

+�

0

11

) =

1

2

.

iii) This part is immediate from Figure 3.

iv) Finally, by parts (i) and (ii), a bit pair whih inludes both the possibilities

of no As and of one A between the spei�ed Ds annot be 00 or 10; it must be

01 or 11. The probability of not having two As in any trae when the digit pair

is 01 is 1, of ourse. By Fig. 3 the probability of not having two As in any of the

n traes when the digit pair is 11 is �

n

= (1�2�(1�))

n

. Hene the probability

of the pair being 01 rather than 11 is 1=(1+�

n

). ut

We must be a little areful in the appliation of this lemma. Firstly, eah

part assumes no knowledge of bit k

i�1

. Knowing it hanges the probabilities.

In most ases, the di�erenes are small enough to be onsidered negligible; for

aurate �gures the table an be used to selet just the ases starting in states

0 or 3 when the preeding proessed bit is 0, and the ases starting in states 1

or 2 when that bit is 1. The only ase where a qualitative di�erene ours is

for 11 when AA only ours if k

i�1

= 1. In the ase of k

i�1

= 0 this means we

annot distinguish 01 from 11 so easily. This is a typial problem to solve when

reonstruting the whole key.

Seondly, dedutions from di�erent traes are not independent. For example,

suppose all of n traes have one A between the Ds in positions i and i+1. From

(ii) of the lemma it is tempting to dedue that the bit pair is 10 with probability

1�(

1

2

)

n

. However, the probability of this may still only be

1

2

. In partiular, this

happens when the parameters � = � = Æ = 0 are seleted. Then the bit pairs 10

and 01 would always have exatly one A between the Ds, and bit pairs 00 and 11

would never have any As. So 01 and 10 would be equally likely with probability

1

2

if exatly one A always ourred. The independent deisions whih an be

ombined are those based on the independent hoies of random bits, as in (iv).

4.3 Reonstruting the Key

For this setion we assume the default values whih give the original algorithm,

namely � = 1 and � =  = Æ =

1

2

. This means � =

1

14

. Later we onsider

alternatives whih might improve seurity. Then Figure 3 immediately yields:

Lemma 4. For the above default values of the parameters,

i) the bit pair 01 has no intervening A between the assoiated Ds of a trae with

probability

9

14

and one intervening A with probability

5

14

;
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ii) the bit pair 11 has no intervening A between the assoiated Ds with probability

2

7

, one intervening A with probability

9

14

, and two As with probability

1

14

.

The hoies whih lead to the probabilities in the previous lemma are made

independently for eah trae. Hene, for n traes and a pair 01, there are no As

in every trae with probability (

9

14

)

n

and one A in every trae with probability

(

5

14

)

n

. A similar result holds for the pair 11. By averaging:

Lemma 5. For the default values of the parameters and n traes, in every trae

a bit pair of the form �1 has:

i) no As between the assoiated Ds with probability f(

9

14

)

n

+ (

2

7

)

n

g=2 ; and

ii) one A with probability f(

5

14

)

n

+ (

9

14

)

n

g=2.

To reonstrut the key k, �rst lassify every bit pair as 00 if there are no

intervening As in any trae, 10 if there is always one intervening A, 11 if there is

an intervening AA, and, otherwise, �1 if there is a variable number of intervening

As. This orretly lassi�es all pairs 00 and 10, and pairs lassed as 11 or �1 are

ertainly all 11 or of the form �1 respetively. For n = 10 both probabilities in

the lemma are bounded above by

1

2

(

9

14

)

10

� 1=166. Thus about 1 in 83 bits pairs

01 and 11 will be inorretly lassi�ed as 00 or 10. Also, by the next lemma,

1�(

6

7

)

10

>

3

4

of pairs 11 will be loated orretly by ourrenes of AA when

they are the left pair in triplets 111. The proof of it goes bak to Lemma 2.

Lemma 6. For the default values of the parameters and n traes, the bit pair

11 has at least one trae exhibiting AA with probability 1�(

6

7

)

n

if it has a 1 to

the right and with probability 0 if it has a 0 to the right.

This is now enough information to dedue almost all the bits of a standard

length ECC key. Every bit whih is dedued as the right member of a pair �1 is

orretly lassi�ed as 1 sine the mixture of patterns used in the lassi�ation

is not possible for pairs of the form �0. However, about 1 in 83+1 of the bits

whih are dedued to be right members of a pair �0 is inorretly lassi�ed as 0

beause not all the possible patterns for the bit pair have ourred. In an ECC

key of, say, 192 bits, about two bits will then be inorret.

Eah bit b belongs to two pairs: �b and b�, say. Traes for the pair �b have

been used to lassify b. In half of all ases, there is a 0 bit to the right and

the harateristi patterns of traes for the pair b0 an be used to ross-hek

the lassi�ation. In the other half of ases the patterns for b1 also indiate the

orret value for b as a result of the ratios between the numbers of ourrenes

of eah pattern. However, the patterns observed for overlapping bit pairs are not

independent. Although unlikely, one set of patterns may reinfore rather than

ontradit a wrong dedution from the other set. There is no spae for further

detail, but the following is now lear:

Theorem 1. Suppose ellipti urve adds and doubles an be distinguished au-

rately on a side hannel. If the original Oswald-Aigner exponentiation algorithm

is used with the same unblinded 192-bit ECC key k for 10 point multipliations

then approximately half the bits an be dedued unambiguously to be 1, and the

remaining bits dedued to be 0 with an average of at most about two errors.
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This theorem says that a typial ECC seret key an usually be reovered on

a �rst attempt using a dozen traes with very little omputational e�ort beyond

extrating the add and double patterns from eah trae. By heking onsisteny

between dedutions of overlapping bit pairs, most errors should be eliminated.

However, it is omputationally feasible to test all variants of the dedued key for

up to two or three errors. The orret one from this set an surely be established

by suessfully derypting some iphertext.

4.4 Seure Parameter Choies?

From the last setion, it is lear that greater seurity ould only arise from

making it less easy to distinguish between pairs of the form �0 and those of the

form �1. This requires hoosing parameters for whih 01 and 11 are less likely

to exhibit both no As and one A between the relevant Ds. From Fig. 3, the

probability of no As for 01 and the probability of one A for 11 are the same, viz.

� = (

1

2

��)� + (

1

2

�2�)� + �Æ:

So this must be made lose to 0 or lose to 1. For example, hoosing � =

� = 1 makes � = 0 and so � = 1, whereas hoosing � = � = Æ = 0 makes

� = 0. Thus both limits are possible. In general, for � = 1 (the �rst ase) the

traes math the pattern of operations for normal square-and-multiply, so we

expet eah A to orrespond to the multiply of a 1 bit. Although 00 and 01 are

indistinguishable from the patterns, and 10 and 11 are indistinguishable (unless

perhaps AA ould our), the attaker now reognises that patterns for the pairs

0� have no intervening A and patterns for the pairs 1� have one intervening A.

This gives him eah bit unequivoally. At the opposite extreme, if � = 0 (the

seond ase) then 10 and 01 beome indistinguishable from the patterns as do

00 and 11 (again, unless perhaps AA ould our). Now the attaker reognises

pairs with equal bits from pairs with di�erent bits. Knowing the �rst bit is 1, he

an dedue all the bits one by one from left to right, and hene the key k.

In general the attaker an exploit the omplementary frequenies of one A

for the pairs 01 and 11. Either they are lose enough to ensure n traes usually

display both patterns (as in the previous setion) or they are distint enough for

the patterns to be strongly biased in opposite diretions in the trae set (as in

the previous paragraph). He an then reognise either the equality of the seond

bits or the di�erene in the �rst bit respetively, and use the fat that eah bit

belongs to two pairs to ross-hek the dedution of many bits. Consequently,

there are no seure hoies of the parameters under repeated use of the unblinded

key k.

Idential working to the previous setion shows that similar omputations

an be performed for keys of any length. With the hoie of parameters there,

the number of traes needed to ahieve a spei�ed degree of on�dene in the

determined bits is n = O(log log k) beause we want at most one error in (

14

9

)

n

=

O(log k) bits. The same alulations apply for any � whih is not 0 or 1, giving

the same size order for n. For the working above in this setion, mistakes are

only made when too many traes reord the opposite pattern to that expeted
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from the value of �. Then, for � lose enough to 0 or 1, the same bound on the

size of n an be obtained for limiting the errors. So,

Theorem 2. No hoie of algorithm parameters is seure for a reasonable key

length under the above attak if O((log k)

2

) deipherings are omputationally

feasible and O(log log k) traes are available from point multipliations using the

same unblinded key.

When adds and doubles are not distinguished with 100% ertainty, the pro-

portions of numbers of As an be used to assign a likelihood to the orretness

of the seleted bit pair. Those whih are most likely to be wrong an be modi�ed

�rst, thereby dereasing the searh time to determine the orret key.

4.5 Counter-Measures

In the absene of a seure set of parameter hoies, further ounter-measures are

required. The most obvious ounter-measure is to restore key blinding. A small

number of blinding bits might still result in the attaker's desired 10 or so traes

for the same key eventually beoming available. These might be identi�ed easily

within a muh larger set of traes by the large number of harater subsequenes

shared between their traes. So the size of the random number used in blinding

annot reasonably be less than the maximum lifespan of the key in terms of the

number of point multipliations for whih it is used. Thus 16 or more bits are

needed, adding around 10% to the ost of point multipliation.

Idential formulae for additions and doublings are inreasingly eÆient and

appliable to wider lasses of ellipti urves, those of Brier and Joye [1℄ in part-

iular. These should make it more diÆult to distinguish adds from doubles.

Another favoured ounter-measure is the add-and-always-double approah.

Then the pattern of adds and doubles is not key dependent. Eah ourrene

of DD has an add inserted to yield the pattern DAD, but the add output is

disarded without having been used. This an also be done for the Oswald-Aigner

algorithm provided, in addition, an extra double is performed to onvert eah

DAAD into DADAD. The output of this double is likewise ignored.

Alternatives algorithms exist. That desribed by Joye and Yen [5℄ is another

add-and-always-double algorithm. There are also several randomized methods [3,

15℄ whih seem to be more robust beause they do not satisfy the two properties

identi�ed in the introdution as those to whih the above attak an be applied.

5 One Trae

It is interesting to speulate on how muh data leaks from a single point multi-

pliation sine the above ounter-measures should prevent re-use of idential

values for the same key. Oswald [10℄ noted that for some deterministi re-oding

algorithms in whih several non-zero digits generate indistinguishable As, the

operation patterns resulting from numbers of up to 12 bits ould only represent

at most 3 keys. By breaking a standard ECC key into 12-bit setions, this means

very few keys atually generate an observed patterns of operations. Moreover,
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these an be ordered aording to their likelihood of ourrene, and this on-

siderably redues the average searh time for the orret key. Hene the key an

be reovered quite easily.

Is the same possible here? In [10℄ she also writes that the same attak is

possible on randomized algorithms with weaker results, but provides no detail.

Randomized algorithms have muh weaker inter-dependenies between adjaent

operation patterns. This should substantially inrease the number of keys whih

math a spei� pattern of point operations. The key Lemma 3 above does not

provide ertainty for many bits unless a number of traes are available; only

the infrequent instanes of AA seem to allow de�nite determination of any bits

from one trae. Of ourse, an analysis of sub-sequenes of more than two bits is

possible, as in [14℄, but, besides better probabilities, this gives no further insight

into whether it is omputationally feasible to reover the key from a single trae.

Instead, software was written to enumerate all the keys whih ould represent

a given string. On average, for the extended version of the algorithm, the trend

up to 16-bit keys indiates learly that a little over O(

4

p

k) keys will math a

given pattern { under 20 math a given 16-bit pattern. This would appear to

ensure the strength of the algorithm when a key is used just one but only if the

key has at least 2

8

bits or there is onsiderable ambiguity in the side hannel

about whether the operations are adds or doubles. The original algorithm has

fewer random hoies, and so has even fewer keys mathing a given pattern.

Thus, a standard ECC key ould be reovered from a single trae in feasible

time if adds and doubles are learly distinguishable.

6 Conlusion

One of several, similar, randomized exponentiation algorithms has been investi-

gated to assess its strength against a side hannel attak whih an di�erentiate

between ellipti urve point additions and point doublings. Straightforward the-

ory shows that at most O(10) uses of the same unblinded key will enable a seret

key of standard length to be reovered easily in a omputationally feasible time.

No hoie of parameters improves seurity enough to alter this onlusion. Using

longer bit sequenes than the theory, it is also lear that software an searh

suessfully for keys when just one side hannel trae is available. However, this

number may need inreasing if adds and doubles might be onfused or standards

for key lengths are inreased.

The main property whih is ommon to algorithms whih an be attaked

in this way seems to be that the next subsequene of operations at a given

point in the proessing of the key must be hosen from a small, bounded set of

possibilities whih is derived from the key and the position, but is independent

of previous hoies. Hene, our overall onlusion is that suh algorithms should

be avoided for repeated use of the same unblinded key if adds and doubles an

be di�erentiated with any degree of ertainty. Furthermore, for typial ECC key

lengths, a single use may be suÆient to dislose the key when adds and doubles

are aurately distinguishable.
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