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Abstract. Increasing key length is a standard counter-measure to crypt-
analysis. However, longer key length generally means greater side chan-
nel leakage. For embedded RSA crypto-systems the increase in leaked
data outstrips the increase in secret data so that, in contrast to the im-
proved mathematical strength, longer keys may, in fact, lead to lower
security. This is investigated for two types of implementation attack.
The first is a timing attack in which squares and multiplications are
differentiated from the relative frequencies of conditional subtractions
over several exponentiations. Once keys are large enough, longer length
seems to decrease security. The second case is a power analysis attack on
a single m-ary exponentiation using a single k-bit hardware multiplier.
For this, despite certain counter-measures such as exponent blinding, un-
certainty in determining the secret bits decreases so quickly that longer
keys appear to be noticeably less secure.
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1 Introduction

So-called side channel attacks on smartcards to discover secret keys contained
therein follow a well-established tradition pursued by the military and secret
services, and exemplified by the long-running Tempest project of the US [27].
That project concentrated on detecting and obscuring electro-magnetic radiation
(EMR) and led to both heavily shielded monitors (for those based on electron
beam technology) and TV detector vans. EMR can be, and is, used to break
smartcards – but with a somewhat smaller aerial, one some 3mm long or less
[5]. If correctly placed and set up with sufficiently sensitive equipment, these can
detect useful variations in EMR non-invasively.

Side-channel leakage occurs through data dependent variation in the use of
resources such as time and hardware. The former results from branching in
the code or compiler optimisation [2, 9], and the latter manifests itself through
current variation as well as EMR [10, 12, 13]. For the RSA crypto-system [17],
conditional modular subtractions should be removed to make the time constant
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[18, 19, 21]. Bus activity is the major cause of power variation, with a strong
relationship between it and the Hamming weight of the data on the bus. In-
structions and memory locations pass along the bus and, in the context of the
limited computational resources of a smartcard, potentially also large quantities
of data. This is partly solved by encryption of the bus [1, 11].

For all the popular crypto-systems used in practice where the key length is
variable, the greater the key length, the greater the mathematical strength of the
system against attack is believed to be. Indeed, a brute force attack will take
time exponential in the key length. However, longer key lengths require more
computation for encryption and decryption or signature and verification. Hence
there is more data which leaks through timing, current and EMR variation. In an
embedded crypto-system to which an attacker has access, such as a smartcard,
a valid question to ask is whether or not the increased data from side channel
leakage actually makes longer keys more vulnerable to attack.

In the symmetric crypto-systems of DES, 3-DES and AES [25, 26], the block
length is fixed and the number of rounds is proportional to the key length (com-
paring DES with 3-DES, and AES with different choices for its parameter Nk).
Hence the data leakage is also proportional to the key length and the implement-
ation strength of the cipher is unlikely to decrease as key length increases.

However, public key cryptography such as in RSA, DSA, ECC, Diffie-Hellman
or El-Gamal [3, 4, 14, 17, 24], usually involves exponentiation in some form, where
the block length and exponent are proportional to the key length. Assuming
multiplication of double-length arguments takes four times the time for single-
length arguments on the same hardware, total decryption/signing time is propor-
tional to the cube of the key length. Consequently, more leaked data is available
per key bit as key length grows. Indeed, if the multiplicative operations of the
exponentiation are performed sequentially using one of the standard algorithms
[7, 8] and no form of blinding, then there is more data per exponent bit for longer
key lengths and one should expect the implementation strength to decrease.

Two attacks illustrate that such an outcome may be possible from increas-
ing the key length. The first is a timing attack [21] whose success is apparently
easier for very short and very long key lengths. By its very nature, the attack
assumes essentially none of the currently expected standard counter-measures
which would ensure no data-dependent time variations and would introduce ran-
dom variation in the exponent. Each key bit is determined by data proportional
to the square of the key length.

The second attack [20] requires more expensive monitoring equipment to
perform and uses power analysis and/or EMR. It is applied to a single expo-
nentiation and so avoids any difficulty arising from employing exponent blinding
as a counter-measure. Key bits are determined independently with each using
all available data, that is, with data proportional to the cube of the key length.
Individual exponent bits are now identified correctly with an accuracy which in-
creases sufficiently quickly to compensate for the increased number of key bits.
Consequently the attack becomes easier with longer key lengths.
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Having assessed the vulnerabilities, our conclusion is that indeed increased
key length will normally lead to a weaker implementations unless appropriate
counter-measures are taken. As this is counter-intuitive, it achieves the main aim
of the paper, namely to provide the justification for cautioning readers strongly
against the temptation to assume that counter-measures to cryptanalysis can be
used successfully as counter-measures to side channel leakage.

2 Security Model

The contexts for the two attacks [20, 21] are slightly different, but, for con-
venience, in both cases we assume a similar, but realistic, scenario. For each, a
smartcard is performing RSA with limited resources and must be re-usable after
the attack. The attacker is therefore limited in what he is allowed to do: he can
only monitor side channel leakage. He cannot choose any inputs, nor can he read
inputs or outputs. In most well-designed crypto-systems, the I/O will be blinded
and the attacker will be able to see at most the unblinded data which is not
used directly in the observed computations. However, the attacker is allowed
to know the algorithms involved, perhaps as a result of previous destructive
studies of identical cards, insider information and public specifications. His goal
is to determine the secret exponent D whether or not the Chinese Remainder
Theorem has been used, and he may use knowledge of the public modulus M
and public exponent E to confirm proposed values. It is assumed that the m-ary
exponentiation algorithm is used, but similar arguments apply to other classical
(i.e. non-randomised) algorithms, such as sliding windows.

The timing attack [21] assumes the use of a modular multiplication algorithm
which includes a final, conditional subtraction of the modulus. We assume the
consequent timing variations enable the attacker to record accurately almost all
occurrences of these subtractions. He then observes a number of exponentiations
for which the same, unblinded exponent is used. We demonstrate the attack
using an implementation of Montgomery’s method which is described in the
next section.

Power use, and hence also EMR, varies with the amount of switching activity
in a circuit. The average number of gates switched in a multiplier is close to linear
in the sum of the Hamming weights of the inputs, and the same is true for the
buses taking I/O to and from the multiplier. So, by employing a combination
of power and EMR measurements from carefully positioned probes [5], it should
be assumed that an attacker can obtain some data, however minimal, which is
related to the sum of the Hamming weights of these inputs. His problem is to
combine these in a manner which reveals the Hamming weights with sufficient
accuracy to deduce the digits of the exponent. The differential power analysis
(DPA) attack [20] shows how this might be done from observations of a single
exponentiation. Hence it does not matter if the exponent has been masked by
the addition of, say, a 32-bit random multiple of φ(M) [9].
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3 Notation

As above, we assume an n-bit modulus M and private exponent D for the RSA
crypto-system. Ciphertext C has to be converted to plaintext CD mod M using a
single, small k-bit multiplier. Hence, except for the exponent, the n-bit numbers
X involved in the exponentiation are represented using base r = 2k and (non-

redundant) digits xi (0 ≤ i < s, say) in the range [0, r). Thus X =
∑s−1
i=0 xir

i

and, without loss of generality, n = ks.
The exponent D is represented with a different base m, typically 2 or 4,

depending on the exponentiation algorithm. Exponentiation is usually performed
using the binary “square-and-multiply” algorithm, processing the exponent bits
in either order, or the generalisation of the most-to-least significant case, called
m-ary exponentiation [7, 8], in which D is represented in radix m using, say,
t digits, and some powers of C(i) = Ci mod M (1 ≤ i < m) which are pre-
computed:

The m-ary (Modular) Exponentiation Algorithm

C(1) ← C ;

For i ← 2 to m-1 do

C(i) ← C(i-1)× C mod M ;

P ← C(dt−1) ;

For i ← t-2 downto 0 do

Begin

P ← Pm mod M ;

If di 6= 0 then P ← P×C(di) mod M ;

End ;

Output: P = CD mod M for D =
∑t−1
i=0 dim

i

The modular products here are too large for the smartcard multiplier to per-
form in one operation. Typically a form of Montgomery’s modular multiplication
algorithm (MMM) is used [16]. This gives an output related to (A×B) mod M
via a scaling factor R = rs which is determined by the number of digits in in-
put A. The form of interest here includes a final conditional subtraction which
reduces the output to less than M , but causes variation in the time taken.

Montgomery’s Modular Multiplication Algorithm (MMM)

P := 0 ;

For i := 0 to s-1 do

Begin

P := P + ai×B ;

qi := (-p0m0
-1) mod r ;

P := (P + qi×M) div r ;

End ;

If P >= M then P := P-M

Output: P = ABr−s mod M for A =
∑s−1
i=0 air

i < M and B < M .
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Here m0
−1 under the mod r is the unique residue modulo r with the property

m0
−1×m0 ≡ 1 mod r, i.e. the multiplicative inverse of m0 mod r. Similarly,

r−s appearing under the mod M is the inverse of rs modulo M . The digit
products such as ai×B are generated over s cycles by using the k-bit multiplier
to compute each digit by digit product ai×bj for 0 ≤ j < s from least to most
significant digit of B, propagating carries on the way so that a non-redundant
representation can be used.

Using induction it is readily verified for R = rs that:

Theorem 1. [22] The MMM loop has post-condition ABR−1 ≤ P < ABR−1+M.

With the advent of timing attacks [9], the conditional subtractions should
be avoided. This is easy to achieve by having extra loop iterations [6, 19, 22].
Alternatively, a non-destructive subtraction can always be performed if space is
available, and the correct answer selected using the sign of the result. However,
EMR measurements might still reveal this choice.

4 The Timing Attack

Walter and Thompson [21] observed that the final, conditional subtraction takes
place in Montgomery’s algorithm with different frequencies for multiplications
and squarings. Indeed, different exponent digits are also distinguished. It is as-
sumed that the attacker can partition the traces of many exponentiations cor-
rectly into sub-traces corresponding to each execution of MMM and use their
timing differences to determine each instance of this final subtraction. This gives
him a matrix Q = (qij) in which qij is 1 or 0 according to whether or not there
is an extra subtraction at the end of the ith modular multiplication of the jth
exponentiation. We now estimate the distance between two rows of this matrix.

With the possible exception of the first one or two instances, it is reasonable
to assume that the I/O for each MMM within an exponentiation is uniformly
distributed over the interval 0..M−1 since crypto-systems depend on multipli-
cations performing what seem to be random mappings of multiplicands onto
0..M−1. Suppose πmu is the probability that the final subtraction takes place
in MMM for two independent, uniformly distributed inputs. Let A, B and Z be
independent, uniformly distributed, discrete random variables over the interval
of integers 0..M−1 which correspond to the MMM inputs and the variation in
output within the bounds given in Theorem 1. Then πmu = pr(Z+ABR−1≥M)

= 1
M3

∑M−1
Z=0

∑M−1
A=0

∑M−1
B=0 (Z+ABR−1≥M) = 1

M3

∑M−1
A=0

∑M−1
B=0 ABR

−1. So
πmu ≈ 1

4MR−1 because M is large.
On the other hand, suppose πsq is the probability that the final subtraction

takes place when MMM is used to square a uniformly distributed input. For A
and Z as above, πsq = pr(Z+A2R−1≥M) = 1

M3

∑M−1
Z=0

∑M−1
A=0 (Z+A2R−1≥M)

= 1
M3

∑M−1
A=0 A

2R−1, whence πsq ≈ 1
3MR−1.

The difference between πmu and πsq means that multiplications can be distin-
guished from squares if a sufficiently large sample of exponentiations is available.
πmu and πsq are given approximately by averaging the entries in the rows of Q.
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If the binary or “square-and-multiply” exponentiation method is used, then the
pattern of squares and multiplies given by these row averages reveals the bits of
the secret exponent D.

If the m-ary or sliding windows method is used for the exponentiation then it
is also necessary to distinguish between multiplications corresponding to different
exponent digits. This is done by using the fact that in the jth exponentiation,

the same pre-computed multiplier C
(i)
j is used whenever the exponent digit is i.

Let πij be the probability that the MMM input A = C
(i)
j induces the conditional

subtraction when the argument B is uniformly distributed on 0..M−1. For Z

as before, πij = pr(Z+C
(i)
j BR−1≥M) = 1

M2

∑M−1
Z=0

∑M−1
B=0 (Z+C

(i)
j BR−1≥M)

= 1
M

∑M−1
B=0 C

(i)
j BR−1 = 1

2C
(i)
j R−1. The C

(i)
j are uniformly distributed as j

varies. So the average value of πij as j varies is, by definition, πmu. Also, the

average value of πij
2 as j varies is π(2) = 1

M

∑M−1
C=0

1
4C

2R−2 ≈ 1
12M

2R−2.

The distance between two rows of Q is defined here as the average Ham-
ming distance between corresponding entries. This is, in a sense, independent
of the sample size N , i.e. the number of columns. Thus the expected distance
between two rows which correspond to the same exponent digit i is dii =
2
N

∑
j πij(1−πij). Its average value is therefore deq = dii = 2(πmu−π(2)) ≈

2( 1
4MR−1− 1

12M
2R−2) = MR−1( 1

2 −
1
6MR−1), which is independent of N and,

indeed, of i.

Now assume that the distributions of C
(i)
j and C

(i′)
j are independent if i 6= i′.

This is reasonable since the RSA crypto-system relies on the fact that application
of a public exponent E=3 to any ciphertext C should randomly permute values
modulo M . Then, if two rows of Q correspond to distinct digits i and i′, their
distance apart is approximately dii′ = N−1(

∑
j πij(1−πi′j) +

∑
j πi′j(1−πij)).

The average value of this is dneq = dii′ = 2(πmu−πmu2) ≈MR−1( 1
2−

1
8MR−1).

It is also possible to compare two squarings or a multiplication with a squar-
ing. In an exponentiation, except perhaps for the first one or two squarings, the
inputs to these would be independent. For a square and a multiplication involv-
ing exponent digit i, the expected distance between the rows of Q is dsq,mu =
N−1(

∑
j πij(1−πsq) +

∑
j πsq(1−πij)). The average value of this is dsq,mu =

πmu+πsq−2πmuπsq = MR−1( 7
12 −

1
6MR−1). For two squares the expected dis-

tance between the (different) rows of Q is dsq,sq = 2N−1
∑
j πsq(1−πsq). The

average value of this is dsq,sq = 2πsq(1−πsq) = MR−1( 2
3 −

2
9MR−1).

Observe that deq, dneq, dsq,mu and dsq,sq must all be distinct because M < R.
As variance in these distances is proportional to 1

N , the distance between two
rows of Q will tend to one of these four distinct values as the sample size in-
creases, making it easier to determine whether the rows represent, respectively,
two multiplications corresponding to the same exponent digit, two multiplica-
tions corresponding to different exponent digits, a squaring and a multiplication,
or two squarings.

It is easy to develop a suitable algorithm to traverse the rows of Q and classify
all the multiplicative operations into subsets which represent either squarings or
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the same exponent digit. One such algorithm was given in [20]. The classification
might, for example, minimise the sum of the differences between the expected and
actual distances between all pairs of rows. The set in which a pre-multiplication
lies determines the exponent digit associated with that set. There are a few
consistency checks which might highlight any errors, such as enforcing exactly
one pre-multiplication in each set of multiplications, and squarings having to
appear only in multiples of log2m consecutive operations. This enables the secret
exponent key D to be reconstructed with sufficiently few errors to enable its
precise determination providing the sample size N is large enough.

5 Doubling the Key Length

Suppose the key length is increased. Does the timing attack become more or less
successful when the ratio M/R, the base m and the sample size N are kept the
same? We will assume that the detection rate for the conditional subtraction
is unchanged because the detection method is unspecified. However, it seems
likely that the subtractions will be easier to spot for longer keys since, although
the same detectable operations are performed in both cases, there are more of
them. The detection assumption means that, by counting only the subtractions
in each row of Q, the same proportion of errors will be made in classifying an
operation as a square or a multiply. Doubling n will then double the number
of such errors. However, using pairs of rows rather than single rows for this
classification improves the likelihood of classifying multiplications correctly.

First note that the distributions for the four types of distances between two
rows are independent of n because the row length N is unchanged and the
probability of a conditional subtraction is unchanged. Suppose the rows have
already been roughly partitioned into one set for each non-zero exponent digit
and one set for squares (m subsets in all). A row is classified, or its classification
checked, by taking the distance between it and each of these sets. This distance
is the average between the chosen row and each row of the group. Doubling n
doubles the size of the group and so provides twice the number of distances from
the row. So, as the other parameters are unchanged, the average distance from
the row to the group will have half the variance when the key length is doubled.
This will markedly reduce the probability of mis-classifying a row.

There are two main types of error to consider, namely those which are de-
tectable through inconsistencies and those which are not. Inconsistencies arise
when squares do not appear in sequences of m or multiplications are not sepa-
rated by squares. For convenience, suppose that the inconsistent errors can be
corrected with computationally feasible effort for both key lengths n and 2n be-
cause this is a minor part of the total cost. Hence it is assumed that a possible
pattern of squares and multiplies has been obtained. For simplicity, we assume
this is the correct pattern. Ambiguities also appear when a multiplication ap-
pears to be near to two or more different subsets of rows or near to none. The
attacker then knows to check each of up to m possibilities for that multiplication.
However, his main problem is the number of incorrect, but consistent decisions.
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A mis-classified row has to be too far away from its correct subset and too
close to one other set in order to be assigned to an incorrect exponent digit.
For convenience, suppose that average distances from one row to the subset
of rows representing a given exponent digit are normally distributed, and that
appropriate scaling is performed so that the distances are N(0, 1). (Although the
distances are bound within the interval [0, 1], the previous section shows their
averages are not close to either end, and so increasing the sample size N will
improve the match with a normal distribution.) Let Z be a random variable with
such a distribution, and let δ be the (similarly scaled) distance at which the row
is equally likely to be in the group as not in it. (A similar discussion is given
in more detail in §7 for the other attack where these notions are made more
precise.) Then the mis-classification occurs with probability pr(Z>δ)2. Since δ
is inversely proportional to standard deviation it is dependent on the key length.
Thus δ = δn increases by a factor

√
2 when the key length is doubled.

Suppose pn is the probability of correctly classifying one multiplication. Since
keys with 2n bits require twice as many multiplications on average, we need pn <
p2n

2 for the attack to become easier for the longer key. From the above, pn =
1−pr(Z>δn)2 where Z is N(0, 1) and so the condition becomes 1−pr(Z>δ)2 <
(1−pr(Z>

√
2δ)2)2. A quick glance at tables of the normal distribution shows

that this is true providing δ > 0.616. In other words, longer keys are easier to
attack if distances between rows of Q are accurate enough. This just requires
the sample size N to be large enough, or the experimental methods to be made
accurate enough, or, indeed, n to be large enough. In conclusion, with all other
aspects fixed there appears to be an optimal key length providing maximum
security against this attack with shorter and longer keys being more unsafe.

However, with more leaked data per exponent bit as key length increases, it is
not impossible that the attack may be developed further so that there is no longer
an optimal secure key length and all increases in key length become unsafe. For
example, some exponentiations are more helpful than others in discriminating
between one exponent digit and any others because the associated multiplicands
are unusually large or unusually small. These instances become apparent while
performing the attack just described. Then a weighted Hamming distance which
favours these cases should improve the correct detection of the corresponding
exponent digit. Increasing key length provides more useful data for detecting
such cases, further decreasing the strength of longer keys.

6 The Power Analysis Attack

The other attack considered here is one based on data-dependent power and/or
EMR variation from the smartcard multiplier [20]. The long integer multiplica-
tion A×B requires every product of digits au×bv to be computed. For each index
u, the power or EMR traces from the multiplier are averaged as v ranges over
its s values. In general, the digits of B are sufficiently random for this averaging
process to provide a trace which is reasonably indicative of the Hamming weight
of au. Concatenating these averaged traces for all au provides a single trace
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from which the vector of the Hamming weights of the digits of A is obtained
with reasonable accuracy. Unless s is small, the Euclidean distance between the
Hamming weight vectors for different, randomly chosen values of A has much
smaller variance than its average. So this distance enables equal arguments A
to be identified and unequal ones to be distinguished. By defining distance be-
tween power traces via the Hamming weight vectors in this way, the attacker
can expect to distinguish between, or identify, the multipliers C(i) used in the
modular multiplications of an exponentiation. This enables the exponent digits
to be discovered and hence the secret key D to be determined.

In detail, each digit product au×bv contributes |au|+|bv|+x to the trace-
averaging process where |d| is the Hamming weight of digit d and x is an in-
stance of a random variable X which represents measurement errors and varia-
tion caused by the initial condition of the multiplier and other hardware. Without
loss of generality, we assume µX=0. Averaging over the s digits of B provides
1
s |B|+|au|+xs as the uth co-ordinate of the vector for A×B. Here the average
for xs is the same as for X (namely 0) but, with realistic independence assump-
tions, the variance is less by a factor s. As the s digits have k bits each and
their Hamming weights are binomially distributed, this has a mean of k

2+|au|
and variance k

4s+ 1
sσ

2
X . Thus, overall, the coordinates have mean k and variance

k
4 (1+ 1

s )+ 1
sσ

2
X . Now, comparing the vectors from two independent multipliers

C(i) and C(i′), the mean square difference in the uth co-ordinate is k
2 (1+ 1

s )+ 2
sσ

2
X ,

leading to a mean Euclidean distance between the vectors of
√

k
2 (s+1)+2σ2

X .

However, if the multipliers are equal, i.e. i = i′, then the Euclidean distance
between the two vectors contains no contribution from C(i) and C(i′). So its
mean is derived entirely from the variance k

4s+ 1
sσ

2
X in each co-ordinate, namely√

k
2+2σ2

X . Hence there is a
√
s+1-fold difference in size between the distances

between vectors for the same and for different multiplicands when the data is
“clean”. Other variation from measurement error and hardware initialisation is
only significant for small s, which is not the case here.

These vectors are used to form a matrix Q = (qij) similar to that in the tim-
ing attack: qij is the weight derived from the jth digit of the ith multiplication.
As before, the distances (now Euclidean) between rows are used to distinguish
squares from multiplies, and identify rows corresponding to the same exponent
digits. Squares have no arguments in common with other operations, so that
they have distances from all other rows which behave in the same way as de-
scribed above for distances between multiplications for different exponent digits;
they are not close to any other rows in the way that rows are for multiplica-
tions associated with the same exponent digit. Thus, as before, the attacker can
potentially determine the secret key D.

7 Increasing the Key Length

The formulae in the previous section make explicit some of the results of in-
creasing the key length n, and hence also the number of digits s. First, the trace
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averaging process is improved for individual entries in Q by reducing their vari-
ance. Secondly, as a consequence, the larger number of columns in Q increases
the Euclidean distance between rows corresponding to different exponent digits
without changing the distance between rows corresponding to the same digit.
This enables each row to be classified more accurately. Thirdly, as in the tim-
ing attack, the larger number of rows in Q reduces the variance in the average
distance of the row from the sets of rows which represent the various exponent
digits. This, too, enables rows to be classified more accurately. So, as well as the
increased difference in average separation, doubling the key length halves the
variance in the separation since the sets for each exponent digit contain twice as
many rows on average. At a theoretical level, this more than squares the proba-
bility of mis-classifying a digit so that the total number of digit errors actually
decreases when key length increases. The question, as before, is whether such
improved accuracy in classification really does achieve this in practice.

Modelling the attack by randomly generating Hamming weights is potent-
ially inaccurate for several reasons. For example, bus encryption should hide
Hamming weight effectively. Secondly, the multiplier does not necessarily yield
the Hamming weight of inputs with much accuracy. Lastly, the multiplier does
not operate independently on different input digits: processing one digit of a
long integer input sets the multiplier in a biased state which affects the amount
of switching when the next digit is processed.

So it was decided to assume the attacker made observations of EMR from,
and power use by, the multiplier which would enable him to estimate the number
of gates being switched in the multiplier. A model was built of the typical gate
layout in a 2k-bit multiplier using full adders and half adders in a Wallace tree
without Booth re-coding. Random long integers were generated, and their dig-
its fed sequentially into the multiplier as in a long integer multiplication. Gate
switching activity was counted for each clock cycle, and the averaging and con-
catenation processes of the previous section were used to generate a row of the
matrix Q. In this way m-ary exponentiation was modelled and a large number
of values obtained for Q. Key length was varied to obtain an insight into general
behaviour and confirm the improved feasibility of the attack as n increases.

Bit length n 32 64 128 256 512 1024 2048

Av btwn same 266 255 234 201 177 176 171
SD btwn same 191 161 137 129 106 110 100
Av min to diff 68.4 146 324 434 843 1453 2153
SD min to diff 53.4 87.9 78 102 140 131 118
%age errors 83 71 16 1.8 0.02 0.00 0.00
SDs btwn avs − − 0.84 2.02 5.41 10.6 18.2
pc (lowr. bnd.) − − 0.439 0.711 0.9932 0.999... 0.999...

Table 1. Gate Switch Statistics for 32-bit Multiplier with m = 8.

Figures from the simulation of 8-ary exponentiation with a standard 32-bit
multiplier and various key lengths are given in Table 1. This is the largest multi-
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plier likely to be found in current smartcards. Standard m-ary exponentiation
was used, not the sliding windows version, so that there were m−1 pre-computed
powers for use in multiplications. These choices of k, m and algorithm make the
correct association of exponent digits more difficult than is typically the case. So
the setting here provides one of the most unfavourable scenarios for the attack,
except for the absence of measurement noise. Moreover, the refinement of making
comparisons between every pair of rows was neglected: just making comparisons
of a row with each of the pre-computed multiplications was enough to establish
the principle that longer key lengths may be less secure.

The column headings in Table 1 provide the key length: the number of bits n
used in both the modulus M and the exponent D. Values are chosen to illustrate
the effect of doubling key length. Although the smaller values are totally insecure,
they allow a much clearer appreciation of the overall trends, especially in the
last three rows of the table where values tend to their limits very quickly. The
first line of data provides the average distance between vectors formed from
multiplications which correspond to equal, exponent digits. These confirm the
theory of the previous section: for equal digits, the average distance is essentially
constant except for a slight decline arising from reduced noise as key length
increases. The second line records the standard deviation in the figures of the
first line. These also show a steady decrease as n increases. They are consistently
about two thirds of the associated means over the given range.

The third and fourth lines provide the average distance, and its standard devi-
ation, of a multiplication from the nearest pre-computed case which corresponds
to a different exponent digit. If exponent digits are assigned to multiplications
on the basis of the nearest pre-computation trace, these lines give a basis for
estimating the number of errors that would be made. The percentage of such
errors encountered in the simulations is given in the following line. For the very
smallest cases, the nearest pre-computation vector is, on average, nearer than
that corresponding to the same exponent digit. So a large number of errors are
made. For the 128-bit or larger keys that are encountered in practice, the near-
est pre-computation is usually the correct one. Due to its marginally different
definition, the average tabulated in line 3 behaves slightly differently from the
average between any pair of multiplications corresponding to different exponent
digits. However, as with the formula in the previous section, this distance in-
creases markedly with the key length, so that multiplications corresponding to
different exponent digits are distinguished more easily. The standard deviations
in line 4 varied noticeably between different samples generated by the multiplier
simulation even for large samples (with the largest s.d. being around 50% greater
than the smallest), but there seems to be a gradual trend upwards.

Both lines of standard deviations are included in order to calculate how many
distances might be incorrectly classified as corresponding to equal or unequal dig-
its. The average was taken of the two standard deviations in each column and the
number of them which separate the two averages in the column was computed.
This is tabulated in the second last line. The final line of the table contains an
estimate from normal distribution tables for the probability pc that the nearest
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trace of a pre-computation correctly determines the exponent digit associated
with a multiplication, given that the operation is indeed a multiplication rather
than a squaring. This assumes that the distances between traces sharing the
same multiplicand are normally distributed with the tabulated expectation and
variance and, similarly, that the minimum distance between one trace and a set
of m−2 traces, all with different multiplicands, is normally distributed with the
given expectation and variance.

Thus, let Zc be a random variable with distribution N(µc, σc
2) which gives

the distance to the correct trace, and let Zd be a random variable with distribu-
tion N(µd, σd

2) which gives the distance to the nearest incorrect trace (one for a
different digit). Then the probability of a correct decision is pc ≈ Pr(Zc < Zd).
Since, by the table, the means are so many standard deviations apart for typical
values of n, a good approximation is given by

Pr(Zc < Zd) ≈ Pr
(
Zc <

σcµd+σdµc

σc+σd

)
× Pr

(
σcµd+σdµc

σc+σd
< Zd

)
This yields pc ≈ Pr(Z < µd−µc

σd+σc
)2 where Z is an N(0, 1) random variable. The

last line of the table gives these values direct from tables of the normal distribu-
tion. This is approximately the probability of identifying the correct exponent
digit given that the operation is a multiplication. It is consistent with the ob-
served number of errors recorded in the table.

These probabilities goes up much faster than the square root as key length

is doubled: p
(128)
c = 0.4386, p

(256)
c = 0.7114, p

(512)
c = 0.9932 and p

(1024)
c = 1

− 2.5×10−7 easily satisfy p
(128)
c < {p(256)c }2, p

(256)
c < {p(512)c }2 and p

(512)
c <

{p(1024)c }2. This means that it is easier to identify the exponent digits correctly
for a pair of multiplications where the key has 2n bits than it is to identify the
exponent digit correctly for a single multiplication where the key has only n bits.
Thus fewer errors will be made for the 2n-bit key. Indeed, the total number of
predicted errors decreases rapidly towards zero over the range of the table. Thus,
since squares are detected in a very similar way (they are not close to any of the
pre-computed powers), at least in the simulation it becomes easier to deduce the
full secret exponent as key length increases.

The analysis above has not taken into account comparisons between all possi-
ble pairs of product traces – distances between pairs of computation stage opera-
tions can be evaluated as well. As noted earlier, each row of Q can be compared
with O(n) other rows instead of just O(1) rows. This decreases the variances
involved and thereby improves the above decision process as n increases. Hence,
as key length increases, a full scale attack will become even easier to process
correctly than is indicated by the table.

8 A Particular Example

Consider the case from Table 1 which is closest to that in a typical current smart-
card, namely a key length of 1024 bits. This will require about 1023 squares,
which will occur in 341 triplets for m = 23, and about 7/8×1023/3 ≈ 298 multi-
plications. By examining the exponent from left to right, of all the squares it is
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necessary to identify only the first of each triplet correctly. Hence there are ap-
proximately 341+298 = 639 operations to identify as squares or multiplications,
after which each multiplication must be associated with a digit value.

Let µsq and µmu be the average distances of a square and multiplication
from the nearest of the m−1 pre-computation traces and let σsq and σmu be
the corresponding standard deviations. A multiplication is assumed if, and only
if, the distance is less than

σmuµsq+σsµmu

σmu+σsq
. The probability psm of this being

the correct decision is then Pr(Z <
µsq−µmu

σsq+σmu
) for an N(0, 1) random variable

Z. For larger m as here, µmu ≈ µc and µsq ≈ µd so that psm ≈
√
pc. So all

the squares and multiplications are identified correctly with probability at least
psq

639 ≈ pc
319.5. Correct determination of the exponent digits for the 298 or so

multiplications is done with probability about pc
298. Hence, without making any

use of the considerable data given by comparing the (1023+298)2/2 or so pairs
of computation phase traces, deduction of the correct exponent will occur with
probability at least about pc

298+319.5 ≈ (1−2.5×10−7)617.5 ≈ 0.9998.

At least theoretically, this very high probability should give cause for concern.
In practice, it is to be hoped that measurement noise will substantially reduce
the ability to identify the correct multiplicand C(i). Even a modest reduction in
the probabilities pmu and psq would be helpful since both must be raised to a
power linear in the number of bits in the key in order to obtain the probability
that the key is identified correctly first time without further computing to try
the next best alternatives. It is computationally feasible to correct only one or
two errors.

9 Counter-measures

Counter-measures for the timing attack are straightforward, and were covered in
the introduction: the exponent can be randomly blinded [9] and the subtraction
can either be performed every time or be omitted every time [6, 19, 22].

The power analysis attack is harder to perform, but also harder to defeat.
Exponent blinding is not a defence. The attack does rely on re-use of the pre-
computed powers. Hence performing m-ary exponentiation in the opposite order,
namely from least to most significant digit, may be a solution. This can be done
without significant extra computation time [15, 23]. For m = 2, the normal
square-and-multiply algorithm can be modified to square-and-always-multiply,
but this is more expensive time-wise.

Apart from hardware counter-measures such as a Faraday cage to shield
the processor and capacitors to smooth out the power trace, a larger multiplier
also helps. This reduces the number of digits s over which averages are taken
and reduces the number s of concatenated traces. Thus it reverses the effect of
increased key length on the traces. Moreover, with larger numbers of words shar-
ing the same Hamming weight, it becomes less easy to use the Euclidean metric
to separate the different multiplicands. Further, one might use two multipliers
in parallel. Montgomery’s modular multiplication algorithm naturally uses two.
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Then the power used by one might successfully shield observation of the power
used by the other. Thus safety can be bought, but perhaps only at a price.

10 Conclusion

Two attacks on smartcard implementations of RSA have been outlined, one a
timing attack and the other a power analysis attack. In each case the effect
of increasing the key length was studied for its impact on the number of bit
errors made in deducing the secret key. For the timing attack, leaked data is
proportional to the square of the key length and it appears that there is an
optimal secure length with both shorter and longer keys being less safe. For the
power analysis attack, leaked data is proportional to the cube of the key length
and the analysis shows that longer keys are less safe.

There are a number of both algorithmic and hardware counter-measures
which improve resistance against such side channel attacks and they should pro-
vide the extra safety that one has been traditionally led to expect from longer key
lengths. However, the main conclusion is that counter-measures to cryptanalysis
must not be assumed to be suitable as counter-measures to side channel leakage.
In particular, increasing key length on its own appears to be quite unsuitable as
a counter-measure in embedded RSA cryptosystems.
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