
Fast Scalar Multiplication for ECC over GF(p)

Using Division Chains

Colin D. Walter�

Information Security Group, Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, United Kingdom

Colin.Walter@rhul.ac.uk

Abstract. There have been many recent developments in formulae for
efficient composite elliptic curve operations of the form dP +Q for a small
integer d and points P and Q where the underlying field is a prime field.
To make best use of these in a scalar multiplication kP , it is necessary
to generate an efficient “division chain” for the scalar where divisions of
k are by the values of d available through composite operations.

An algorithm-generating algorithm for this is presented that takes
into account the different costs of using various representations for curve
points. This extends the applicability of methods presented by Longa
& Gebotys at PKC 2009 to using specific characteristics of the target
device. It also enables the transfer of some scalar recoding computation
details to design time. An improved cost function also provides better
evaluation of alternatives in the relevant addition chain.

One result of these more general and improved methods includes a
slight increase over the scalar multiplication speeds reported at PKC.
Furthermore, by the straightforward removal of rules for unusual cases,
some particularly concise yet efficient presentations can be given for
algorithms in the target device.

Keywords:Scalarmultiplication,multibase representation, addition chain,
division chain, exponentiation, DBNS, elliptic curve cryptography.

1 Introduction

Exponentiation has been the subject of much study over the years. Classic sum-
maries of the state of the art a decade ago are Knuth and Gordon [14,12]. The
aim of these methods is almost always minimising the operation count in an add-
ition chain for the exponent. This is an NP-hard problem. More recent work has
concentrated on wider optimisation issues, such as those imposed by constraints
on the size of any pre-computed table of values, the working space required,
the relative costs of squaring and multiplication, and reducing the side channel
leakage generated by a particular operation sequence.
� The work described in this paper has been supported [in part] by the European

Commission through the ICT programme under contract ICT-2007-216676 ECRYPT
II.

Y. Chung and M. Yung (Eds.): WISA 2010, LNCS 6513, pp. 61–75, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



62 C.D. Walter

Recently, efficient composite elliptic curve operations of the form dP+Q have
been developed for double-and-add (d = 2), triple-and-add (d = 3) and quintu-
pling (d = 5) etc. over Fp [6,18,16]. By careful choice of curve formulae and affine
coordinates for the table entries, these become faster than equivalent combina-
tions of the normal point addition and doubling formulae, and so should lead to
faster scalar multiplication. With each application of the operation dP+Q to the
accumulating scalar multiple, the part of the key which has yet to be processed
is reduced by a factor d using integer division. This is exactly the process for
generating a division chain, and so division chains are the natural setting for
optimising scalar multiplication when these composite operations are available.

Division chains were first defined in [19] and [20] where the author uses them
to derive efficient addition chains in the context of limited table and working
space. The resulting chains are significantly shorter than those for binary expo-
nentiation when using just one more register. Without cheap inversion (as is the
case for RSA), exponentiation by k can be performed in a right to left direction
using an average of about 1.4 log2(k) operations using divisors d = 2 and d = 3
(op. cit. §5). This improves on the usual 3

2 log2(k) operations using only the divi-
sor d = 2 but is less efficient than the 4

3 log2(k) for sliding 2-bit windows1 which
also uses space equivalent to one more register than binary methods. Although
with more divisors the speed can be improved to under 5

4 log2(k) operations us-
ing the same space, this requires much more pre-processing of the exponent and
applies only to the right to left direction for which the composite elliptic curve
operations dP+Q do not have more efficient forms. Figures are not provided in
[19] for the addition-subtraction chains relevant for elliptic curves, nor are they
provided for the left-to-right direction which is marginally less efficient for space
constrained implementations but which is of relevance here where the composite
operations provide increased efficiency. One aim of the present work is to fill this
gap.

For application to elliptic curves, it is the number of field operations which
particularly determines the time efficiency of scalar point multiplication. This
number depends to a large extent on the form of the curve equation and the
coordinate representations chosen for the table entries and intermediate points
during processing2 [13]. The resulting cost of point doublings, additions, triplings
etc., rather than the length of the addition sub-chain, is the natural input to
the cost evaluation function from [19] which is used to compare competing alter-
native divisors. This explicit function enables the design time derivation of the
algorithm for choosing divisors at run time in a more refined manner than in
[17]. Moreover, it transfers all of the search for the best divisor to design time.

1 k is partitioned from right to left into “digit” subsequences 0, 01 and 11. Exponenti-
ation is performed left to right using table entries for 01 and 11. Even digits 0 occur
with probability 1

2
whereas the odd digits 01 and 11 occur with probability 1

4
. So

an exponent bit has probability 1
3

of being associated with digit 0, and 2
3

with digit
01 or 11. Thus the average cost per exponent bit is asymptotically 1

3
· 1
1
+ 2

3
· 3
2

= 4
3

operations.
2 Some speed-ups require additional space for four or more coordinates per point.



Fast Scalar Multiplication for ECC over GF(p) Using Division Chains 63

The less structured double base and multibase representations of Dimitrov
et al. [4,5,6] represent the scalar k as a signed sum of powers of two (or more)
numbers. The extra freedom there allows the use of a slower, greedy algorithm
to obtain a very compact representation. However, compactness is not the aim
here and extra conditions are required to provide the structure required here
for an efficient conversion to a fast addition sequence. These extra conditions
are those of a randomary representation [22]. Similar representations have been
created more recently by Ciet, Longa et al. [3,15,17] but restricted to cases in
which all digits are zero except those associated with divisor 2 (or its powers).

Here those restrictions are lifted to give a very general setting which encom-
passes all this previous work on the more structured multibase forms. A side
effect of the generality is a modest increase in the speed records achieved in [17].
But the results are also applicable in wider contexts than the particular devices
targetted there. For example, the relatively cheap cost of tripling on DIK3 curves
[10] makes use of the new availability of non-zero digits associated with base 3.

The main body of the paper describes the above in more detail: division
chains and their notation are covered initially; then a discussion on selecting
divisor and digit sets followed by details of the cost function for determining the
recoding process, and results to evaluate a variety of parameter choices. Finally,
Appendix B contains an explicit and very straightforward example algorithm for
generating an efficient division chain in the case of divisor set {2,3}.

2 Addition Chains

The concept of addition chains and addition-subtraction chains needs extending
to the context here. Let OP be the set of “distinguished” operations which we
wish to use in exponentiations schemes. For convenience only unary or binary
operations are considered. For the (additive) group G of interest, they combine
one or two multiples of a given g ∈ G into a higher multiple of g. So, for each
p ∈ OP there will be a pair (λ, μ) ∈ Z

2 such that p(g, h) = λg+μh for all
g, h ∈ G. As special cases, (1, 1) yields g+h (an addition), (2, 0) yields 2g (a
doubling) and (−1, 0) provides −g (an inversion). Thus OP can be viewed as a
subset of Z

2. Recent research has provided double-and-add, triple-and-add and
even quintuple operations [18,16] to help populate OP . These are of the type
p = (2, d) or p = (3, d) etc. where the d-th multiple of the initial point g is in the
pre-computed table. These operations lead to a more general addition chain:

Definition 1. For a set OP of linear binary operators on an additive group, an
OP-addition chain for k ∈ Z of length n is a sequence of quadruples (ai, bi, ki, pi)
∈ Z

3×OP, 0 ≤ i ≤ n, such that, for all i > 0,

– ki = λiai+μibi for pi = (λi, μi) ∈ OP
– ai = ksi and bi = kti for some si and ti with 0 ≤ si < i and 0 ≤ ti < i
– (a0, b0, k0, p0) = (1, 0, 1, (1, 0))
– kn = k.



64 C.D. Walter

3 Representations from Division Chains

Addition chains are too general for use in devices with limited memory. The
standard left-to-right binary exponentiation algorithm overwrites all previous
calculations with the latest value and so its operations can only access the most
recent value and the initial input. Hence its addition chain can only contain
triples of the form (ki−1, ki−1, 2ki−1) (a squaring) or (ki−1, 1, ki−1+1) (a multi-
plication). Schemes with pre-computed tables are similarly restricted.

The natural extension of this restriction allows only quadruples of the form
(ki−1, 1, λiki−1+μi1, (λi, μi)) in an OP-addition chain, i.e. ki = λiki−1+μi. Con-
sequently, just as the sequence of squares and multiplications completely deter-
mines the exponent k in binary exponentiation, so the sequence of operations
(λi, μi) also determines k. Given k, we can obtain such a sequence (in reverse
order) by iteratively choosing (λi, μi) ∈ OP such that μi lies in the residue class
of ki mod λi, and then performing the division ki−1 = (ki−μi)/λi. The process
starts with k = kn and finishes with k0 = 0. This defines a division chain for
an integer k, and it is specified by the list of pairs (λ, μ) corresponding to the
constituent operations. This is clear from the presentation of k as

k = (((μ1λ2 + μ2)λ3 + ... + μn−2)λn−1 + μn−1)λn + μn (1)

Subscripts for addition chains are used in the opposite direction from those in
digit representations of numbers. In order to obtain the customary notation for
the latter, let us re-number the pairs (λ, μ) by defining (ri, di) = (λn−i, μn−i).
Then the division chain determines a randomary representation3 of k [19]:

k = (((dn−1rn−2 + dn−2)rn−3 + ... + d2)r1 + d1)r0 + d0 (2)

in which the ri are called bases and the di are called digits. If all the divisors ri

were equal, then this would simply be a representation in radix r = ri. Digits
would be chosen in [0..r−1] to yield the standard representation. Here the bases
will belong to some small set B ⊂ N such as {2,3,5} and the digits will lie in a
subset D ⊂ Z which may contain negative values and may depend on the base.

An example from [22] is

23510 = (((((1)3 + 0)2 + 1)5 + 4)2 + 0)3 + 1.

Following standard subscript notation for specifying the base, this is written
23510 = 120312450213. Digit/base pairs are obtained using the usual change of
base algorithm except that the base may be varied at each step: for i = 0, 1, ...
extract digit di by reducing modulo ri, and divide by ri. In the example of 23510,

3 Developed from the words binary, ternary, quaternary etc. to indicate the apparent
random nature of base choices as used in, for example, [21]. This is a not a multi-base
(or mixed base) representation in the original sense of that term, and so “randomary”
may be useful to distinguish the two forms. A double base (DBNS) example is writing
k =

∑
i±2bi3ti , which has a different structure.



Fast Scalar Multiplication for ECC over GF(p) Using Division Chains 65

the first base is 3 and 235 mod 3 = 1 is the first digit (that of index 0). The
algorithm continues with input (235− 1)/3 = 78 to determine the next digit.

Such representations determine a left-to-right exponentiation scheme using
Horner’s rule (which follows the bracketing above from the inside outwards). In
an additive group G the iterative step is

kig = rn−i(ki−1g)+(dn−ig) (3)

using table entry dn−ig and starting at the most significant, i.e. left, end.

4 Choosing the Base Set B
This section considers the choice of base set when the scalar k is used just once
and the full cost of creating the multibase representation must be counted. If a
cryptographic token were to use the same key throughout its lifetime then more
effort could be spent on optimising the representation offline before initialisation,
and so different rules would apply. Such a situation is not covered here.

Application of base r reduces the key by a factor of almost exactly r and
so shortens k by close to log2 r bits. If this requires cr group operations when
used, then its approximate cost for comparing with other bases is cr/ log2 r
(when neglecting other benefits). Apart from powers of 2 this ratio is lowest for
numbers of the form r′ = 2n′±1 as these consume very close to n′ scalar bits
for a cost of only n′+1 or n′+2 operations according to whether the digit is
zero or represented in the pre-computed table. For large n′ this is going to be
better than the average cn for the whole algorithm on a key of n bits, where
c is typically in the region of 1.2 to 1.25. With a table of T entries such bases
can be used in about 2T+1 out of r′ cases. k mod r′ must be computed every
time to check the usability of r′ and, for k in binary, the effort involved in this is
proportional to n′ log(k). However, the saving to the scalar multiplication is less
than (c−1)n′ group operations per use, giving an average of (2T+1)(c−1)n′2−n′

per calculation of k mod r′. Hence, as n′ increases the re-coding cost will quickly
outweigh any benefit obtained from its use. The same reasoning applies to any
large non-2-power radix. Hence B should only contain small numbers.

Generation of addition-subtraction chains for all small integers shows that,
with few exceptions, exponentiation by most bases r requires close to 1.25 log2 r
operations4 without counting the extra one for any point addition. With an aim
of achieving an average of fewer than 1.25 operations per bit, such base choices
are not going to be of much use unless the associated digit is zero or there is
foreseeable benefit, such as a zero digit in the immediate future.

An investigation of small bases was carried out. It was noted first that no base
r below 29 required more than two registers for executing a shortest addition
4 The distribution is much more uniform than for NAF, and the 1.25 operations per

bit slowly decreases. NAF gives a chain with an asymptotic average of 4
3

log2 r oper-
ations. 27 is the first number with an add/sub chain shorter than the NAF, and 427
is the first number with an add/sub chain two operations shorter than the NAF. 31
is the first that needs a subtraction for its shortest chain.



66 C.D. Walter

chain for r – the minimum possible for numbers other than powers of 2. So space
is not an issue. For the most part, only prime candidates need be considered for
the following reason. Suppose radix r = st is composite and it is to be used on
k with digit d. Then k would be reduced to (k−d)/st. However, application of
the base/digit pairs (s, 0), (t, d) has the same effect. Consequently, the value of
including r as a divisor depends on whether or not a minimal addition chain for
r is shorter than the sum of the chain lengths for any factorisation of r. As an
example, no powers of 2 above 2 itself need be included. Thus, the pair (4, 3) can
be replaced without cost by (2, 0) followed by (2, 3). However, 33 should be kept
in as it has a chain of length 6 which is less than the combined chain lengths for
3 and 11. The investigation revealed {33, 49, 63, 65, 77, 95, 121, 129, 133, 143, . . .}
to be the sequence of composite numbers having shorter addition/subtraction
chains (by sequence length) than the sum of those of any factorisation.

In fact, shorter needs to be interpreted at a finer level of detail. Powers of
3 then become more interesting: two applications of base 3 requires two point
doublings and two point additions but one application of base 9 can be achieved
with three doublings and one addition. This is the same number of point oper-
ations, but should be cheaper since a doubling ought to have a lower cost than
a point addition. Similarly, 15 is cheaper than 3 and 5 separately.5

After omissions for the above reasons and because of poor ratios cr/ log2 r,
there remains only the initial part of the sequence

{2, 3, 5, 9, 15, 17, 31, 33, 47, 63, 65, 77, 97, 127, 129, . . .}.

In particular, 7, 11 and 13 have been removed. They have among the very highest
costs of any base, with cr/ log2 r well above 4

3 . This high cost holds even when
the relative cost of a doubling is accounted for and has a value anywhere between
0.5 and 1.0 times the cost of an addition. As the ratio approaches 0.5 the popular
base 3 also becomes extremely expensive under this measure, whereas bases 5
and 9 are consistently good. 3 is better than 5 only once the ratio is above 0.87.

An exhaustive search was made for shortest divisor chains using choices from
the above sequence to determine which bases were the most useful since any
resource-constrained device can only allow a few possibilities. Shortest was mea-
sured assuming point doubling to have a cost between half and one times the
cost of an addition (see [17], Table 1). The digit set was allowed to be any subset
of {−7, ..., +7}. In all cases, the frequency of use was close to, in descending
order, {2; 3; 5; 9, 7; 17, 13, 11; 33, 31, 23, 19; 65, 63, ...; 129, 127, ...} which is 2 con-
catenated with the sequences 2n+1+1, ..., 2n+3 for n = 0, 1, 2, ...6 As expected,
the frequencies of bases r decrease as r increases. Consequently, it is reasonable
to consider only bases in the set {2, 3, 5, 9, 17}7 since, with such low frequencies,
more bases can only give negligible speed-up to a scalar multiplication. Further-
more, extra bases would require more code and more pre-computation. In fact,
5 The finer detail of gains from using composite operations is treated below.
6 This listing assumes that bases r of interest have minimal addition chains of length

1+�log2(r−2)�, which is true for the range of interest and the above restrictions.
7 In order of decreasing frequency when doubling is half the cost of addition.



Fast Scalar Multiplication for ECC over GF(p) Using Division Chains 67

the decrease in frequencies is much greater when the cost of doubling approaches
that of point additions. In this case, it is hardly worth considering more than
just {2, 3, 5, 17}.8 However, when doubling is just half the cost of adding, note
that 7, 11 and 13 are still possible options. Despite the heavy average cost per
bit by which these bases reduce k, they can lead to future values of k which
have cheaper than average reductions and enable the extra cost to be recovered.
The search for optimal chains also revealed that odd bases rarely make use of
non-zero digits. This was the case even when the addition of a table element was
assigned just half the cost of the additions used in multiplying by a base. Thus
almost no extra speed is likely to be achieved if non-zero digits are allowed for
odd bases when composite curve operations are introduced.

This leads to the most sensible base choices for embedded cryptosystems being
B = {2, 3} or B = {2, 3, 5}. They were first considered in [21,22] and more
recently by [18,17] where non-zero digits are only allowed for base 2. Larger sets
provide virtually no reasonable advantages and might only be considered out of
vanity for attaining a rather marginal increase in speed.

5 Choosing the Digit Set D
Using the very rough cost function given by addition chain length in the previous
section it became clear that the fastest scalar multiplication methods would use
non-zero digits almost exclusively with the base 2. Consequently, digits which
are multiples of 2 can be eliminated as follows. Applying the base/digit pair (r, 0)
followed by (2, 2d) is equivalent to applying the (r, d) followed by (2, 0). So the
table need not contain even digit multiples of the initial point to cover this case.
Similarly, (2, d′) followed by (2, 2d) is equivalent to (2, d+d′) followed by (2, 0),
but the new expression saves one point addition. If d+d′ is not an acceptable
digit, (2, d+d′) could be implemented as a double and add (of multiple d) followed
by an extra addition (of multiple d′), thereby again eliminating the need for any
even digit multiples in the table or any further adjustment to the representation.
Alternatively, d+d′ could be split into an acceptable digit and a carry up to the
preceding base/digit pair as in the constant base case, with this process repeated
until the digit problem is resolved at no additional cost.

As in the case of NAF, and confirmed by the search in §4, the choice of a
non-zero digit is almost always going to be made to make the next one or more
digits zero. By taking the digit set D = {0,±1,±2, . . . ,±(2T−1)} for given table
size T , it is possible to maximise the power of 2 achievable as a factor of the
next value of k during recoding. Because the composite operators work equally
well for any table entry, the desired operation set now has the form OP = B×D
where the two factors are now known.

6 Optimising the Representation

As just noted, a primary aim in the multibase algorithm is to select bases for
which the digit is zero as this saves the point addition. When this is not possible,
8 In order of decreasing frequency when doubling has the same cost as addition.



68 C.D. Walter

the recoding strategy should make a base/digit choice to ensure it happens next
time or as soon as possible thereafter. This requires knowing the key modulo a
power of each available base. Let π be a common multiple of the elements in the
base set B which contains only primes dividing available bases and in which it is
helpful to have a high power of two because of the frequency with which 2 will
be chosen as a base. Decisions will be based on ki mod π. Indeed, for arbitrary p
prime to all base choices, the value of ki mod p can clearly have no influence on
the choice of base. However, if π were picked large enough (e.g. larger than k) we
would have complete knowledge of k and so there would be enough information
to determine an optimal division chain.

Divisor choices are not independent. The choice of the first divisor is partly
affected by the best choice for the next, and less so by subsequent ones. After a
chain of four or more, simulations show that the effect is minimal. Hence we want
to pick the first divisor to minimise the average cost of the addition sub-chain
formed by the next four or so divisors. So let λ be the length of sub-chain to
be investigated. This would be the window size if the base were fixed. Initially,
let π be the least common multiple of the λth powers of each base in B. If the
pre-computed table has T elements and δ is minimal such that T ≤ 2δ then a
base 2 digit can sometimes be chosen to guarantee divisibility by at least 2δ+2.
(For example, with T = 3 and table entries for {±1,±3,±5}, we have δ = 2
and, when ki≡5 mod 8, either of the digits −3, 5 might be used, but one will
make ki−di≡0 mod 16.) In such cases, in effect, we have a base of 2δ+2. Thus
the base 2 digits cannot be chosen accurately towards the end of the window
unless π is augmented by another factor of at least 2δ+1. Moreover, this example
shows that the cost benefits of digit choices continue beyond the end of the
window.

For each residue mod π, all possible sub-chains of length λ are generated.
The first pair (r, d) is then chosen from the “best” sub-chain and assigned to
be the choice whenever ki has that value modulo π. Explicit code for this is
presented in the first algorithm of Appendix A. Since the search takes a total of
O(π{T ∑

r∈B
1
r}λ) time, λ = 3 is easily achievable with reasonable resources.

In the next section, the device-specific definition of “best” is given properly.
However, the above association of pairs (r, d) with residues mod π is obtained
from an off-line search and yields a simple algorithm for programming into the
target device, such as the second algorithm in Appendix A. Most divisor choices
are determined by very simple rules such as selecting the pairs (2, 0) and (3, 0)
respectively when the residue mod π is divisible by 2 or 3. So the table of data
can generally be converted to a much more compact set of simple rules. The full
set of rules mod π may contain many exceptional cases. They become less critical
to the performance of the algorithm as the number of residues affected decreases,
and so some very small cases can be absorbed into larger ones with very little loss
in performance, thereby reducing code size. Appendix B contains two examples
of the recoding algorithm’s iterative step showing just how compact the resulting
code can be and yet still provide a very efficient scheme.



Fast Scalar Multiplication for ECC over GF(p) Using Division Chains 69

6.1 The Detailed Cost Function

In §4 the cost per bit of applying base r is given as cr/ log2 r where cr was initially
taken as the length of the addition chain used for r in order to ascertain which
were the best values to put in B. From now on, costs cr,d are taken at the accu-
racy required to differentiate successfully between competing choices for (r, d).
If reading and writing operations, field additions and scalar field multiplications
are relatively cheap, cr,d is given by the appropriately weighted sum of field
multiplication and squaring counts. They depend on the form of the equation
and the coordinate representation chosen for the elliptic curve and its points.
The reader is referred to [17], Table 1, for examples covering the specialised
efficient doubling, tripling and quintupling operations of interest here.

A sequence of λ iterative steps of the type (3) can be composed into a single
operation of the same type, represented by a base/digit pair (r, d) where the new
base r is the product of those of the constituent pairs. The cost function cr,d

can be extended to this by adding the costs of the component pairs. However,
the per bit cost cr,d/ log2 r is no longer a good estimate of the relative value of
the choice of either (r, d) or the first pair in the window. The reduction achieved
by any sub-chain is typically followed by an average reduction. Suppose c is the
average cost per bit and an alternative sub-chain has cost cr′,d′ to achieve a
reduction by (r′, d′). Removing a further factor of r/r′ from (ki−d′)/r′ costs an
average of c log2(r/r′), giving a total of cr′,d′+c log2(r/r′) for reducing ki by a
factor of r. So the first choice is better on average if cr,d < cr′,d′+c log2(r/r′),
i.e. if cr,d−c log2 r < cr′,d′−c log2 r′. Thus the “best” sub-chain is taken to be
the one minimising

cr,d − c log2 r (4)

This is simply the extra work required above the average expected. Although use
of (4) requires advance knowledge of the average cost per bit c, various values
can be tried in practice, of course, in order to converge on the smallest.

Finally, no choice of base/digit sequence for the window makes full use of
the value ki mod π. For a sub-chain equivalent to (r, d), cr,d does not take into
account properties of (ki−d)/r mod π/r. As noted above, the final digit in the
window is usually chosen, like the others, to give exact divisibility in the following
digit when that possible. So the sub-chain pair (r, d) in (4) should be augmented
to include pairs (r′, 0) representing any remaining divisibility in ki−d mod π.

6.2 A Markov Process

An interesting consequence of specifying the divisor/digit pair to choose given
the residue of ki modulo π is that these residues become non-uniform after the
first iteration and, after about half a dozen choices, have settled close to their
asymptotic probabilities. This is a Markov process which, in the limit, leads to
a precise value for the work c per bit required when evaluating (4).

The process is described by a π×π transition probability matrix P = (pij)
where pij is the probability that an input of i mod π will generate an output
of j mod π. If the pair (ri, di) is associated with i mod π then the output j



70 C.D. Walter

will be one of the ri values (i−di+tπ)/ri mod π for 0 ≤ t ≤ ri−1. As these are
all equally likely, each of these pij has the value ri

−1 and for other values of j,
pij is zero. The matrix Pm contains entries p

(m)
ij which are the probabilities of

input i mod π resulting in an output of j mod π after m divisors are applied
to k using the algorithm. Averaging over all i gives the probability of residue
j mod π after m iterations. This converges very quickly to a steady state in
which the probabilities typically lie in a range between 3

4π−1 and 5
4π−1.

If pj is the asymptotic probability for residue class j mod π and cj the cost
of the pair (rj , dj) associated with that class, then the average cost per bit is

c =

∑π−1
j=0 pjcj

∑π−1
j=0 pj log2(rj)

(5)

In fact, using a slightly more aggressive (smaller) value for c in (4) seems to yield
the best value for c in (5). Our overall objective is, of course, to minimise this.

The transition matrix is usually too big for practical calculations. Instead, a
Monte Carlo simulation can be performed. A large number of random keys k is
generated, written in base π for convenience, and recoded to find the probabili-
ties. Since (4) may have failed to capture all the useful information in the asso-
ciated residue modulo π, this process can be repeated on neighbouring schemes
to identify the local minimum for c: for each residue i mod π alternative pairs
(ri, di) can be tried to improve c. The same process can also be used to evaluate
potential simplifications to the scheme.

7 Test Results and Evaluation

Table 1 shows figures comparing the above algorithm with the best earlier results
as provided by the refined NAF method of Longa and Gebotys in [17], Table
4. It illustrates the speed-ups for three sets of projective coordinate systems.
These are standard Jacobian coordinates (with a = −3), inverted Edwards co-
ordinates [7,1] and extended coordinates on the Jacobi Quartic form [2,13]. The
cost per operator columns give the number of field multiplications or equiva-
lents (counting 0.8 for each squaring) which are used for doubling (D), tripling
(T), quintupling (Q) and the addition of a table entry (A) within a double-
add, triple-add etc. operation in the given coordinate system. The stored points
were the first few of 1, 3, 5, 7,... times the initial point. The number of them is
recorded in the third column group, and the cost of initialising them is included
in the operator count totals. In order to make scaling to other key lengths easier,
an initialisation optimisation [17,8,16] which saves 10 to 12 field multiplications
has not been applied to either set of results. The final column is the asymptotic
number of field multiplications (or equivalents) per bit of k, calculated as in §6.2.
This is the value of c in (5).

The methodology here performs a systematic search at design time to deter-
mine the best run-time choice. This choice is wider than that in [17] because,
for example, 2 is not automatically the divisor when k is even (see Appendix B
for an example), bases which divide k exactly need not be chosen as divisors,



Fast Scalar Multiplication for ECC over GF(p) Using Division Chains 71

Table 1. Comparative Point Multiplication Speeds for 160-bit Scalar (cf [17], Table 4)

Method Coords Mult Cost/Op B #Stored π Op. Count Cost/Bit
D T Q A Pts Sq = 0.8M c

[17] JQuart 6.0 11.2 8.4 {2,3} 8 1229.2 7.50
” ” ” ” ” ” 1 1288.4 8.10
” InvEdw 6.2 12.2 8.8 ” 8 1277.1 7.79
” Jacobian 7.0 12.6 10.2 ” 8 1445.1 8.91

Here JQuart 6.0 11.2 8.4 {2,3} 8 21333 1207.1 7.32
” ” ” ” ” ” 4 21333 1212.0 7.52
” ” ” ” ” ” 2 21734 1253.8 7.84
” ” ” ” ” ” 1 21734 1287.6 8.10
” InvEd 6.2 12.2 8.8 ” 8 21333 1242.5 7.55
” Jacobian 7.0 12.6 10.2 ” 8 21333 1414.9 8.57

[17] JQuart 6.0 11.2 17.2 8.4 {2,3,5} 8 1226.5 7.48
” Jacobian 7.0 12.6 19.6 10.2 ” 8 1435.2 8.84

Here JQuart 6.0 11.2 17.2 8.4 {2,3,5} 8 293252 1203.7 7.30
” Jacobian 7.0 12.6 19.6 10.2 ” 8 293252 1409.8 8.53

and divisors other than 2 can have non-zero digits associated with them. All this
automatically leads to the possibility of faster scalar multiplication. However,
the tabulated results here represent a less deep search – a larger value for π is
necessary to uncover all the conditions listed in [17], Tables 2 and 3. Further
computation could have been used to obtain them. There is no clear cost func-
tion in [17] but an explicit cost function has been given above in (4). This is not
the obvious one (which is sub-optimal) but arguments have been presented to
justify the conclusion that it is better. This difference probably also contributes
to the greater speeds here, which are asymptotically 2.5% faster than [17].

The best value for money seems to occur with tables of 4 points, being under
1% slower than their 8 point counterparts. For the fastest times, observe that
the Jacobi Quartic coordinate representation [13] can be used to perform 160-
bit scalar multiplication with divisors 2 and 3 and a table of 8 pre-computed
points using, on average, the equivalent of fewer than 1200 field multiplications
when the optimisations of [8,16] are applied. This can be achieved with very
straightforward code, which is given in the first example of Appendix B.

8 Conclusion

A detailed methodology has been presented for deriving compact, device-specific
algorithms which perform very efficient scalar multiplication for elliptic curves
in modestly resource constrained environments when the scalar is an unseen
fresh, random, cryptographic key. The method is based on multibase represen-
tations of the scalar and careful construction of a cost function for evaluating
alternatives. A valuable output demonstrating the efficacy of the approach is
the fastest known algorithm in certain contexts, such as when composite curve



72 C.D. Walter

operations are available. Another output is a couple of examples which illustrate
the compactness of resulting code for the iterated recoding step.

With an initial recoding cost equivalent to two or three field multiplications,
the exponentiation algorithm is efficient and avoids an expensive run-time search
by resolving the search questions at design time. Part of the speed-up is derived
from a much fuller choice of base/digit pairs at each step than prior algorithms
and part from a new, explicit device-specific cost function for evaluating different
options in the search for the most efficient addition chain. That function can,
and should moreover, use detailed knowledge of the times for various field opera-
tions. Exactly the same methods can be applied with more extensive preparatory
computation to generate still faster or compact algorithms than tabulated here.

References

1. Bernstein, D., Lange, T.: Analysis and Optimization of Elliptic-Curve Single-Scalar
Multiplication. Cryptology ePrint Archive, Report 2007/455, IACR 2007 (2007)

2. Billet, O., Joye, M.: The Jacobi Model of an Elliptic Curve and Side-Channel
Analysis. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS,
vol. 2643, pp. 34–42. Springer, Heidelberg (2003)

3. Ciet, M., Joye, M., Lauter, K., Montgomery, P.: Trading Inversions for Multipli-
cations in Elliptic Curve Cryptography. Designs, Codes and Cryptography 39(2),
189–206 (2006)

4. Dimitrov, V., Cooklev, T.: Two Algorithms for Modular Exponentiation using
Non-Standard Arithmetics. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E78-A(1), 82–87 (1995)

5. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Theory and Applications for a Double-
Base Number System. In: Proc. 13th IEEE Symposium on Computer Arithmetic,
Monterey, July 6-9, pp. 44–51. IEEE, Los Alamitos (1997)

6. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and Secure Elliptic Curve Point
Multiplication using Double-Base Chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

7. Edwards, H.: A Normal Form for Elliptic Curves. Bull. Amer. Math. Soc. 44, 393–
422 (2007)

8. Elmegaard-Fessel, L.: Efficient Scalar Multiplication and Security against Power
Analysis in Cryptosystems based on the NIST Elliptic Curves over Prime Fields,
Masters Thesis, University of Copenhagen (2006)

9. Fouque, P.-A., Valette, F.: The Doubling Attack – Why upwards is better than
downwards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS,
vol. 2779, pp. 269–280. Springer, Heidelberg (2003)

10. Doche, C., Icart, T., Kohel, D.R.: Efficient Scalar Multiplication by Isogeny De-
compositions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 191–206. Springer, Heidelberg (2006)

11. Giessmann, E.-G.: Ein schneller Algorithmus zur Punktevervielfachung, der gegen
Seitenanalattacken resistent ist. In: Workshop über Theoretische und praktische
Aspekte von Kryptographie mit Elliptischen Kurven, Berlin (2001)

12. Gordon, D.M.: A Survey of Fast Exponentiation Algorithms. Journal of Algo-
rithms 27, 129–146 (1998)

13. Hisil, H., Wong, K., Carter, G., Dawson, E.: Faster Group Operations on Elliptic
Curves. Cryptology ePrint Archive, Report 2007/441, IACR (2007)



Fast Scalar Multiplication for ECC over GF(p) Using Division Chains 73

14. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algo-
rithms, vol. 2, §4.6.3, pp. 441–466. Addison-Wesley, Reading (1981)

15. Longa, P.: Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems
over Prime Fields, Masters Thesis, University of Ottawa (2007)

16. Longa, P., Miri, A.: New Composite Operations and Precomputation Scheme for
Elliptic Curve Cryptosystems over Prime Fields. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 229–247. Springer, Heidelberg (2008)

17. Longa, P., Gebotys, C.: Fast Multibase Methods and Other Several Optimizations
for Elliptic Curve Scalar Multiplication. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 443–462. Springer, Heidelberg (2009)

18. Mishra, P.K., Dimitrov, V.: Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication using Multibase Number Representation. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
390–406. Springer, Heidelberg (2007)

19. Walter, C.D.: Exponentiation using Division Chains. In: Proc. 13th IEEE Sym-
posium on Computer Arithmetic, Monterey, CA, July 6-9, pp. 92–98. IEEE, Los
Alamitos (1997)

20. Walter, C.D.: Exponentiation using Division Chains. IEEE Transactions on Com-
puters 47(7), 757–765 (1998)

21. Walter, C.D.: MIST: An Efficient, Randomized Exponentiation Algorithm for Re-
sisting Power Analysis. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp.
53–66. Springer, Heidelberg (2002)

22. Walter, C.D.: Some Security Aspects of the MIST Randomized Exponentiation
Algorithm. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 276–290. Springer, Heidelberg (2003)

23. Yao, A.C.-C.: On the Evaluation of Powers. SIAM J. Comput. 5(1), 100–103 (1976)

Appendix A. Pseudo-Code for the Recoding Scheme

The algorithm in Fig. 1 determines the base/digit pairs to associate with each
residue i mod π of the key k during generation of the multibase representation.
Its inputs include a choice of base set B and digit set D suitable for the target
device, the window width λ and the value of π (the λth power of the lcm of bases
in B times a power of 2 determined by the table size). The output is deposited in
two arrays, Base and Digit. The function Cost is that in (4), and it is described
in detail in §6.1.

The algorithm in Fig. 2 uses the arrays Base and Digit to recode the key k,
storing the resulting multibase representation in an array MB. Usually the array
accesses in the loop body will be replaced by coded rules as in Appendix B.

Appendix B. Code for the Iterative Step

The very simple code of Figure 3 provides mod 2632 rules for selecting the next
divisor/ residue pair (r, d) for k with base set B = {2, 3} and a precomputed
table of 8 points containing 1, 3, 5,..., 15 times the input point. Once the pair
(r, d) is chosen, k is then reduced to (k−d)/r for the next application of the
rules. The rules were obtained using a sub-chain length of λ = 2 with c = 7.328



74 C.D. Walter

For i: 0 ≤ i < π do

{ BestCost ← MaxCost

For all r1 in B and all d1 in D do

If (i-d1) mod r1 = 0 then

{ i1 = (i-d1)/r1

For all r2 in B and all d2 in D do

If (i1-d2) mod r2 = 0 then

{ ...

If Cost((r1,d1),(r2,d2),...,(rλ,dλ)) < BestCost then

{ BestCost ← Cost((r1,d1),(r2,d2),...,(rλ,dλ))
Base[i] ← r1

Digit[i] ← d1

}

}

}

}

Fig. 1. Algorithm to determine Base/Digit pairs for each Residue mod π

n ← 0

While k �= 0 do

{ i ← k mod π
MB[n].r ← Base[i]

MB[n].d ← Digit[i]

k ← (k-Digit[i])/Base[i]

n ← n+1

}

MB.len ← n

Fig. 2. Algorithm to recode k to a Division Chain Representation

If k = 0 mod 9 and k �= 0 mod 4 then

r ← 3, d ← 0

else if k = 0 mod 2 then

r ← 2, d ← 0

else if k = 0 mod 3 and 18 < (k mod 64) < 46

and ((k mod 64)-32) �= 0 mod 3 then

r ← 3, d ← 0

else r ← 2, d ← ((k+16) mod 32) - 16.

Fig. 3. A Choice of Mod 2632 Recoding Rules for a Table Size of 8

in (4) and the Jacobi Quartic form costs of the composite operations as listed in
Table 1. This generated the same value for c in (5). Increasing λ by 1 only saves
1 more multiplication per 160-bit scalar.

Similar conditions are given in [17], Tables 2 and 3. The main difference here
is that some multiples of 2 are assigned the divisor 3 rather than the 2 forced
by [17]. This enables the next residue to be modified by a large table entry to
make it much more highly divisible by 2. Note, however, that divisor 3 is not



Fast Scalar Multiplication for ECC over GF(p) Using Division Chains 75

If k = 0 mod 9 and k �= 0 mod 4

and (16 < (k mod 256) < 240) then

r ← 3, d ← 0

else if k = 0 mod 2 then

r ← 2, d ← 0

else if k = 0 mod 3 and 8 < (k mod 32) < 24

and ((k mod 32)-16) �= 0 mod 3 then

r ← 3, d ← 0

else r ← 2, d ← ((k+8) mod 16) - 8.

Fig. 4. A Choice of Mod 2832 Recoding Rules for a Table Size of 4

used with a non-zero digit although the generating algorithm could have allowed
it. Including the pre-computations for table entries, the total field multiplication
count for 160-bit scalars is just under 1208 (at 1 squaring = 0.8 multiplications).
This was obtained by a Monte Carlo simulation. The optimisations referred to
in [17,16] enable a further 10-12 multiplications to be saved during initialisation
using [8], §4.2.2, thereby taking the total to under 1200.

In the same context as the above except for having a pre-computed table of
four instead of eight points, the code in Fig. 4 works with π = 2832 and generates
a recoding which requires 1214.2 field multiplications on average. This is over
22.7 multiplications better than code with no triplings.


	Fast Scalar Multiplication for ECC over GF(p) Using Division Chains
	Introduction
	Addition Chains
	Representations from Division Chains
	Choosing the Base Set B
	Choosing the Digit Set D
	Optimising the Representation
	The Detailed Cost Function
	A Markov Process

	Test Results and Evaluation
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


