
FORMAL SPECIFICATION and

VERIFICATION of SOFTWARE

Colin D. Walter & Stephen E. Eldridge

Department of Computation

UMIST

PO Box 88

Manhester M60 1QD, UK

www.o.umist.a.uk

1 Importane of Formal Spei�ation

The normal task of a software ompany is to onstrut programs and systems

from an informal natural language desription of what they should do, and to

maintain them. Bridging the gap between the natural language desription and

the programming language ode are sripts written in more or less formal spe-

i�ation languages (see also artiles "Problem Domain System Analysis" and

"Software Life Cyles"). Here we onsider those spei�ation languages that

are formal. Their grammar, or syntax, and their meaning, or semantis, should

therefore be preise and unambiguous.

Sripts in suh languages are not usually exeutable, that is, they do not

say how to do anything. Their aim is to apture exatly what the user wants

so that the software engineer builds the right produt, without relying entirely

on a vague requirements desription from the user. However, they ontain little

or no information as to how the neessary omputations might be done. This is

what the programmer adds to obtain the �nal ode. There is always an initial

dialogue between the ustomer and software engineer to determine what produt

is desired. Most of these disussions involve making the needs more preise.

Spending time on building the wrong produt an be very ostly espeially

if prototyping is not possible or the results annot be seen until �nal assem-

bly. It is therefore very important, ost-e�etive and time-saving to use formal

spei�ation languages at this early stage to determine all but the most trivial

level of detail for what is required. Inreasingly, both onsumer and supplier are

requiring formal spei�ations as part of their ontrat in order to make possible

or defend against laims for damage in litigation.

1.1 Levels of Formality

One signi�ant problem with spei�ations is that they appear unfriendly; it an

be diÆult to onstrut, read or understand them. This is normally overome by

2 Conise Enylopedia of Software Engineering

having a hierarhy of levels of detail and formality, in whih the initial informal

desription is moulded into the �nal formal spei�ation over several intermedi-

ate stages, and deomposed into modules small enough to be fully omprehended.

All those di�erent levels are kept together as doumentation for the ode, and

would be read in inreasing order of formality and detail as introdution to

aid omprehension of the end produt. Thus, spei�ations are developed like

software using normal engineering tehniques suh as stepwise re�nement and

top-down design. Indeed, both spei�ation and software need to be produed

simultaneously, the �rst doumenting the seond, for the spei�ation to be of

any pratial use in maintenane or veri�ation.

1.2 Levels of Cost

Another apparent problem with writing a formal spei�ation is the ost. Al-

though spei�ation languages are no more ompliated than programming lan-

guages, unfamiliarity with their apparently more abstrat notions makes soft-

ware engineers relutant to takle spei�ation, and so experts may need to be

used. Veri�ation is more diÆult, but that is a di�erent subjet, requiring the

prodution of a formal spei�ation �rst. There are many shortuts avoiding ex-

pense. In partiular, there is often no need to speify everything fully: the lowest

level proedures might not require spei�ations distint from their ode, and

many variables may not be suÆiently important to require preise de�nitions.

Indeed, spei�ation of any part of a piee of software is perhaps only justi�ed

when the produt is going to be widely or frequently used, has safety-ritial

appliations, malfuntion has severe �nanial impliations, or ontinuous main-

tenane is expeted, i.e. wherever the need for orret ode justi�es the extra

ost.

2 Basi Terminology

Spei�ation has a number of purposes. In dereasing order of usage this inludes

onstrution, maintenane and veri�ation. For eah of these, the level of spe-

i�ation needed to doument ode is very similar. Initially one needs pre- and

post- onditions written in prediate logi. If we all these P and Q respetively,

and onstrut ode C to meet this spei�ation, then we may write

fPg C fQg

where f g are the omment brakets for the programming language. This means

that if the initial data satis�es P and C is exeuted suessfully, then the �nal

data satis�es Q. In this ase we say C satis�es the given spei�ation or that it

is partially orret. There is no laim that the ode will terminate or will do

so without raising an exeption, but if it always does for initial data satisfying

the pre-ondition, then it is said to be totally orret.

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 3

At any point within some ode we an insert a prediate formula, usually

written within omment brakets. Thus, the property P between setions of

ode C and D in

C fPg D

is alled an assertion. It is something that is expeted to be true of the data

whenever ontrol passes that point during exeution. Within ertain restritions,

suh as avoiding unbounded quanti�ation, it might be possible during run-time

to evaluate P . This an be espeially valuable when debugging beause it an

give muh more information than strong typing, and an enable errors to be

disovered muh loser to their origin.

3 Programming Language Semantis

3.1 Assignment

Spei�ations should enable us to write orret ode, but this is only possible if

we know what the various onstruts in the programming language are supposed

to do � they need speifying. Imperative programming is based on what the

assignment statement does, namely,

fQ(x=t)g x := t fQg (assignment)

(The notation of the pre-ondition is explained in the next paragraph.) In terms

of manipulating numbers in a mahine, this ode states that the value of the

expression t is to be assigned to the variable x. However, in terms of the prop-

erties of the data held in the mahine, its spei�ation delares that in order to

obtain property Q for the data immediately after its exeution we need the data

to satisfy property Q(x=t) immediately before its exeution.

The preise meaning of Q(x=t) in the above axiomati de�nition of assign-

ment is not important here. Roughly speaking, it is a slightly altered version of

the formula Q in whih every so-alled \free" ourrene of x has been replaed

by t. An ourrene of x is bound if it is in a subformula of Q with the form

8xQ

1

or 9xQ

1

, where 8 and 9 are the usual quanti�ers \for all" and \there

exists". Ourrenes whih are not bound by a quanti�er are free. However, the

formation of Q(x=t) may also involve renaming some bound variables in order

to prevent onfusion between ourrenes of variables introdued into Q by the

substitution and those already assoiated to the quanti�ers appearing in Q.

The de�nition of assignment is an axiom sheme in the proof system we would

use to verify any imperative ode. From it we an dedue the partial orretness

of, for example,

fTrueg x := 2 fx = 2g:

This statement laims that any input satisfying the empty ondition True (i.e. no

restrition on the input) will, after exeution of x := 2, produe data satisfying

x = 2. This is ertainly what we would expet the ode to do. To prove it,

4 Conise Enylopedia of Software Engineering

the assignment rule is applied. The pre-ondition whih yields the desired post-

ondition x = 2 is obtained by replaing free ourrenes of x by 2. This gives

2 = 2, whih is equivalent to True. So the spei�ed ode fTrueg x := 2 fx = 2g

is partially orret. A proof of total orretness is straightforward here beause

the expression 2 on the right side an ertainly be omputed on any mahine

without run-time errors or non-termination, and assignment of the result to

memory should not ause problems.

3.2 Veri�ation Conditions

The equivalene of 2 = 2 to True really just needed a proof of the impliation

True ! 2 = 2. In general, our spei�ation provides a pre-ondition P to the

ode, but partial veri�ation, as above, generates a weakest pre-ondition P

0

. In

e�et P

0

desribes the widest set of input for whih the ode will produe output

with the desired properties. So we are left with a formula P ! P

0

whih needs

to be proved. Thus, the need to prove pure prediate formulae arises naturally

in program veri�ation, and is the point where theorem provers are required.

3.3 Sequening and Branhing

The other basi omponents of programming languages are sequening, branh-

ing and looping. Eah is onstruted from smaller setions of ode. If these

subsetions are known to satisfy partiular spei�ations, then a spei�ation

for the whole onstrut an be dedued using an inferene rule. For example,

writing the list of hypotheses above a line, and the onsequene below, we have

the sequening rule

fPg C fQg; fQg D fRg

fPg C ; D fRg

(sequening)

The two hypotheses above the line say we start with the assumptions (i) that if

omputation starts with data satisfying P and exeutes C suessfully then Q

will hold, and (ii) that if omputation starts with data satisfying Q and exeutes

D suessfully then R will hold. Clearly, if we start with data satisfying P , and

then suessively and suessfully exeute �rst C, so that Q holds, and then D,

then the output data will satisfy R. This is what is laimed by the onlusion

given below the line.

Branhing an be de�ned axiomatially in a similar fashion:

fPg C fQg; fRg D fQg

f(P&B) or (R & not B)g if B then C else D fQg

(branhing)

In this ase, the output from exeuting C or D is assumed to be Q, given in-

put data with properties P and R respetively. The onlusion of the rule is

that (P&B) or (R & not B) is the pre-ondition required for the onditional

statement to give output satisfying Q. This formula involves the logial op-

erators &, or and not whih are idential to the Boolean operators found in

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 5

the programming language itself. The Boolean expression B is, of ourse, a re-

spetable formula of prediate alulus. As observed in the assignment example

with True ! 2 = 2 the apparently ompliated pre-ondition an often be

simpli�ed substantially.

3.4 Repetition

Repetition is the most interesting onstrut as far as veri�ation is onerned.

Its axiomati spei�ation is this:

fPg C fPg

fPg while B do C fP & not Bg

(looping)

It is really not at all obvious that this rule is the slightest bit helpful! Above

the line, the hypothesis about what C does seems to say very little: exeution

of C does not do anything to the property P of the data. Worse still, the loop

itself seems to do little more: the output data fails to satisfy B, but at least still

satis�es P , as it did before. The key to seeing the usefulness of the rule is that

not B provides information that allows P & not B to release the properties we

want. This is illustrated in the proedure Add below.

However, the major diÆulty of this rule in veri�ation is that knowledge

of the formula P & not B does not enable the formula P to be dedued. The

problem is that the formula P & not B is not provided syntatially separated

onveniently into omponents P and B, but as a semantially equivalent formula.

Thus, (P

0

& not B) & not B is semantially equivalent to P

0

& not B, but

syntatially we ould extrat either P

0

& not B or P

0

as the formula P . We

annot know what formula to pik for P without help from the programmer.

The formula P is alled a loop invariant, and in it the programmer needs to

state the umulative properties he intends the loop to have ahieved at the end

of a typial iteration.

Further onstruts an be spei�ed in a similar manner to obtain the full

axiomati semantis of the language. Proedure and funtion alls are ompli-

ated by suh things as various parameter passing mehanisms, side e�ets, lazy

or eager evaluation, and order of evaluation of expressions and parameters. This

learly requires a deeper treatment than an be given here. For this, the inter-

ested reader is referred to [2℄ or [3℄.

4 Programming Example

4.1 Informal Desription & Code

Let us look at an example in Pasal, starting with a brief semi-formal desription

of the notation and an idea of the spei�ation. This forms the bridge between the

formal spei�ation, whih is presented by annotating the ode, and an informal

requirements desription. It should explain both the ode and its spei�ation.

6 Conise Enylopedia of Software Engineering

The main data struture of the program segment given below is Register =

Array[Index℄ of Bit. It is used to hold the bits of numbers written in binary no-

tation. So the bit element A[i℄ of the array A : Register is the oeÆient of 2

i

in

the number held in A. Hene the value of the number in A is

P

MaxIndex

i=0

A[i℄�2

i

,

whih will also be written as A.

Part way through the hand alulation of the sum of two numbers, the sum of

the numbers represented by the �rst few digits has been found. The proedure

Add here mimis this, and so it is useful to de�ne A

I

to be the value of the

number in the �rst I+1 bits, those with indies from 0 up to I . So we take A

I

=

P

I

i=0

A[i℄�2

i

. The number represented by taking no bits at all is 0, and so we

have A

�1

= 0. In this notation the value of A is A

MaxIndex

sine the array has a

maximum index value ofMaxIndex. The largest Register value possible is given

by an array in whih every bit is 1. If we all this MaxReg, then MaxReg[i℄ = 1

for eah i : Index. It represents the number MaxReg = 2

MaxIndex+1

� 1.

The proedure below is to output an overow ondition when the sum of the

inputs is greater than MaxReg and otherwise output the sum In1+In2 of the

inputs. The addition is done bit-wise as in a simple hardware adder or as in a

hand alulation, with the same de�nition of arries. (Here the latter analogy is

slightly more appropriate as the bit values are expressed in terms of mathemat-

ial funtions rather than logi gates.)

Const MaxIndex = 31 ;

Type Index = 0..MaxIndex ;

IndexPlus1 = 0..MaxIndex+1 ;

Bit = 0..1 ;

Register = Array[Index℄ of Bit ;

Proedure Add(In1,In2 : Register ;

Var SumOut : Register; Var Overflow : Bit) ;

{ Write only: SumOut, Overflow }

{ Pre-Add: True }

{ Post-Add: (In1+In2 � MaxReg $ Overflow = 0

$ SumOut = In1+In2 }

Var I : IndexPlus1 ;

Carry : Bit ;

Begin { Add }

I := 0 ;

Carry := 0 ;

While I <= MaxIndex do

Begin

SumOut[I℄ := (Carry + In1[I℄ + In2[I℄) mod 2 ;

Carry := (Carry + In1[I℄ + In2[I℄) div 2 ;

I := Su(I)

{ (In1

I�1

+ In2

I�1

= SumOut

I�1

+ Carry*2

I

) &

(0 � I � MaxIndex+1) }

End ;

Overflow := Carry

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 7

End ; { Add }

4.2 The Spei�ation

As in this example, ode should ontain in-line the formal spei�ation. This

inludes, �rst of all, against eah type delaration, data invariants whih are

properties expeted to hold for all variables of that type. There are no restritions

for the types used here, but examples of this are given below where we desribe

some spei�ation languages. Next, pre- and post-onditions for the proedure

need to be given in the proedure heading. These are of the kind desribed at

the beginning of this artile, and refer to the funtional properties of the body

of the proedure.

Also in the heading there should be information about any use made of vari-

ables global to the proedure. Lists of those variables whose values are aessed

or updated must be provided. This enables one to dedue the following. If P is

a property whih holds before a all to the proedure and P ontains no free

ourrenes of any global variables whih are updated, then P will still hold after

exeution of the all. In other words, property P will hold after the proedure all

if it held beforehand and none of its free variables has had its value hanged. The

onsequene of inluding these lists is that pre- and post-onditions for proe-

dures an be made simpler beause they do not need to inlude suh properties.

Indeed, the post-ondition need only desribe what hanges have been made to

variables whih are updated, that is, those in the write lists.

With the detail in the heading �xed, the programmer an omplete the ode.

This onstrution demands that he or she deides how the addition is to be done,

and, in partiular, what needs to have been ahieved at the end of eah iteration

of the loop. This is inserted in the ode as an assertion, whih, in this spei�

instane is alled a loop invariant and is the property named P whih we use

when applying the looping inferene rule above to verify the ode. It ontains

algorithmi information whih a program veri�er annot be expeted to dedue.

In the proedure Add, there is one loop invariant, namely,

(In1

I�1

+ In2

I�1

= SumOut

I�1

+ Carry � 2

I

) & (0 � I �MaxIndex+1)

The loop inferene rule states that at the end of the loop this property holds

together with not B where B is the Boolean ondition in the loop. Sine not B

is I > MaxIndex and the loop invariant gives I � MaxIndex+1, it is easy to

dedue I =MaxIndex+1. Substituting this value into the loop invariant yields

In1

MaxIndex

+ In2

MaxIndex

= SumOut

MaxIndex

+Carry � 2

MaxIndex+1

at the

end of the loop, that is,

In1 + In2 = SumOut+ Carry � 2

MaxIndex+1

This illustrates how the rule for loops really does produe something useful.

It is the pre- and post- onditions and loop invariants whih are essential to

enable automati program veri�ation, for human understanding of the ode, and

8 Conise Enylopedia of Software Engineering

for maintenane purposes. However, the informal spei�ation was also useful,

making it easier to understand the formal one whih douments the ode, and

being fairly important to the understanding of the ode.

4.3 Partial Veri�ation

A program veri�ation tool starts with the post-ondition, applies the inferene

rules and axioms as above whih de�ne program onstruts, and makes use of

loop invariants to dedue the weakest pre-ondition, say Q, whih the initial

data has to satisfy. This may not math the pre-ondition P supplied in the

spei�ation. Clearly, to omplete the proof we need P ! Q to hold initially.

This is alled a veri�ation ondition, and is a pure prediate alulus formula.

We had the example 2 = 2 ! True above. Veri�ation onditions arise in

partiular at points where assertions have to be supplied. Consider loops as an

example. To prove the loop against its spei�ation, the veri�er must �rst prove

the hypothesis in the looping rule and then apply that rule to onlude the loop

is orret. In proving this hypothesis, the supplied loop invariant P is used as

the post-ondition on the loop body, and the veri�er dedues the weakest pre-

ondition Q. This may not oinide with the pre-ondition, also P , required by

the inferene rule for loops. In suh a ase, P ! Q would need to be proved in

order to show that input satisfying P will indeed satisfy the pre-ondition Q.

4.4 Termination

Total veri�ation of the example above requires a proof that everything termi-

nates properly. Assuming that the range of implemented integers inludes the

values of MaxIndex+1 and 3, it is fairly straightforward to hek that every-

thing respets the type restritions, inluding all intermediate alulations. So

the only possible soure of improper termination would be if the while loop were

in�nite. Normally, to prove termination of loops we need to exhibit a funtion of

the data with ertain properties in respet of its values at the end of eah itera-

tion. The funtion needs to reah an aeptable value in a �nite number of steps.

With real number omputing, this funtion might be an estimate of error, whih

we must show tends to zero so that it is eventually small enough. In disrete

omputing, as here, the funtion is often a monotonially dereasing natural

number valued funtion. Thus, in the example, the funtion MaxIndex+1�I

dereases stritly on eah iteration, is initially positive, and is always at least

0 (by the type onstraints, whih ought to have been heked). As the number

of values that the funtion an have is at most one more than its initial value,

there are at most that number of iterations of the loop: a �nite number. So the

ode terminates properly.

Further detail about spei�ation of languages and programs and their veri-

�ation is to be found in referenes [1℄, [2℄, [3℄ and [6℄.

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 9

5 Spei�ation Languages

There is muh more to veri�ation than the total orretness onsidered so far.

Two spei�ation languages, Z and VDM, provide notation whih makes easy a

systemati treatment of further aspets.

Spei�ations of operations in VDM, and in the similar spei�ation method

Z, make use of a state whih, in terms of Pasal, may be thought of as the set of

values of the global variables whih our operations or proedures may use. This

is often expressed by saying that VDM and Z aremodel-oriented approahes,

meaning that their spei�ations de�ne operations by their e�et on external

variables from a state. This requires

1. de�nition of the set of states

2. de�nition of the initial state(s)

3. spei�ation of implementable operations whose external variables

are parts of the state.

We shall give an example, whih will also serve to show what kind of notation

is used. It onerns the storage manager of an operating system. The manager

must assoiate eah available blok of storage with its user.

5.1 Example in VDM: The Spei�ation

Let B be the set of storage bloks and U be the set of users. The assoiation of

bloks with users is spei�ed by a partial funtion from B to U . The funtion is

partial beause some bloks may not be used. It helps to keep expliit trak of

the unused, or free, bloks. Hene we are led to onsider a state whose external

variables are the partial funtion dir : B ! U and the set free � B.

First, we shall show how to make use of this state using the notation of VDM.

The types of the variables in the state are written

dir : map B to U and

free : set of B:

The free bloks are preisely those whih are not in the domain of de�nition of

dir. Hene we have the data invariant:

free = B � dom(dir):

We ould de�ne a reord, or omposite, type to store this information if we liked.

The VDM notation for suh a type is

SM :: dir : map B to U

free : set of B

or

10 Conise Enylopedia of Software Engineering

SM 4 ompose SM of

dir : map B to U

free : set of B

end

where eah value, sm : SM , must satisfy the data invariant

inv�SM(sm) 4 free(sm) = B � dom(dir(sm)):

(The symbol 4 is shorthand for \is de�ned by".) The initial state, with no

bloks alloated, has dir = ; (the empty map) and free = B.

Consider the operation, REQUEST , whih �nds an unused blok b for a user

u (and updates dir and free appropriately). We speify it by using a heading,

rather like a funtion head in Pasal, whih shows the names and types of the

inputs and outputs. We then list the external variables from the state whih the

operation uses. These are marked rd if they are read only or wr if they may also

be written to or hanged. Finally we write a pre-ondition whih must be satis�ed

by the inputs and state values before the operation is done and a post-ondition

whih must be satis�ed by the outputs and state variables after the operation is

done. The post-ondition is likely to have to refer to the values of the inputs and

values of state variable before the operation is done. To distinguish values of state

variables before and after the operation we deorate the previous values with a

hook. This deoration is only neessary in post-onditions sine pre-onditions

an only refer to initial state values. The spei�ation of REQUEST may be

written in this style as follows.

REQUEST (u : U) b : B

ext wr dir : map B to U

ext wr free : set of B

pre free 6= ;

* *

post b 2 free ^ free = free �fbg

*

^ dir = dir y fb 7! ug

In this spei�ation we impliitly assume that dir and free satisfy the data-

invariant: free = B � dom(dir). y is the override operator whih here gives

preedene to the new assoiation of b with u rather than any previous assoi-

ation given by dir. In this ase we ould equally well have used [but it would

then not have been so lear that our new value for dir is still well-de�ned.

5.2 Example in VDM: Proof Obligations

Suh a spei�ation immediately gives rise to a proof obligation. We must prove

that the operation is implementable. This does not usually mean writing a

omputer program whih satis�es the spei�ation but one should show that,

given a state and input satisfying the pre-ondition, there is a state and output

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 11

satisfying the post-ondition. In partiular one must show that the resulting state

does not ontain variables whih fail to satisfy the appropriate data invariants.

In our example this entails showing that free = B � dom(dir) still holds after

the operation REQUEST is performed.

We usually start with an impliit spei�ation whih is very abstrat and

does not say how to implement the operation, merely what it should do. This

has great advantages. Suh a spei�ation is likely to be more onise than an ex-

pliit de�nition whih ontains implementation detail. It also is more adaptable,

leaving us free to hange the atual types and algorithms used in an implemen-

tation without having to rewrite our spei�ation from srath. Nevertheless we

shall have to make our spei�ation more onrete in order to make sure that an

implementation really does satisfy the spei�ation. This proess, whih usually

proeeds in several steps, is alled data-rei�ation. In our example we would

probably not be able to use sets to implement free or funtions in order to im-

plement dir but might have to use some sort of list and list of pairs respetively.

We �rst de�ne a new type for storing information about the storage manager

and then rewrite the spei�ations of our operations, REQUEST et., to suit

this new type. In order to show that this rei�ation step has worked properly

we must disharge several more proof obligations.

First we must show that our new type ontains at least one representative

for eah member of our previous storage manager type SM . If we an show this

than our new type is alled an adequate representation of SM .

Then we must prove various properties of our new operations. First they must

be shown to be implementable. Then we must show that our new operations or-

respond to the old ones. A proof of suh a property is alled an implementation

modelling proof.

Without going into detail about what an implementation modelling proof

entails, we should note that it is onsiderably harder if the original type ontains

two di�erent elements whih are not distinguishable by any �nite sequene of its

operations. This undesirable property is alled implementation bias. In our

example SM is unbiased but our new type is likely to be biased sine there are

several lists with the same elements as any given set free with more than one

element, and we do not wish to distinguish between them. The absene of bias

in SM allows us to de�ne the orrespondene between the new type and SM by

means of a funtion from the new type to SM . This funtion is alled a retrieve

funtion. The presene of a retrieve funtion makes implementation modelling

proofs simpler and also gives us a simple riterion for adequay, namely that the

retrieve funtion should map the new type onto SM .

5.3 The Same Example in Z: The Spei�ation

The spei�ation language Z is a variant of VDM notation. It uses a generalisa-

tion of set omprehension notation, fx 2 T jP (x)g, alled the shema. A shema

S has form S 4 [delarationsjprediate℄ and is usually written vertially.

12 Conise Enylopedia of Software Engineering

S

delarations

prediate

Suh a shema may be used to de�ne a omposite type by putting the �elds

of the type in the delaration part and the data-invariant in the prediate part.

Thus our storage manager type SM an be de�ned by:

S

dir : B ! U

free : IP(B)

free = B n dom(dir)

The notation used by Z is often more like standard mathematial notation

than is the notation of VDM. For example the type of dir is written B ! U

(sometimes with a line through the arrow to stress that we are using partial

funtions) instead of map B to U , and the power set of B (i.e. the set of its

subsets) is written IP(B) instead of set of B.

Shemas are more versatile than the example above suggests; they may be

used not only for de�ning omposite types but also for speifying operations.

The following deoration onventions are used:

Deoration with ! denotes an input to an operation.

Deoration with ? denotes an output from an operation.

Deoration with

0

denotes a state after variable.

For example, if s is the value before an operation then s

0

is the value afterwards.

Both s and s

0

must be delared in a shema de�ning an operation involving s

beause the prediate part of the shema must show how s is hanged by the

operation (even if there is no hange and s = s

0

).

The shema speifying our operation REQUEST is:

D. Morris & B. Tamm eds, Pergamon Press, 1991, pp 331-338 13

REQUEST

dir; dir

0

: B ! U

free; free

0

: IP(B)

b! : B

u? : U

free = B � dom(dir) ^

free

0

= B � dom(dir

0

) ^

free 6= ; ^

b! 2 free ^

free

0

= free� fb!g ^

dir

0

= dir � fb!! u?g

Note that the override operator is now written �. The prediate part of this

shema ould be simpli�ed. For example it follows from b! 2 free that free 6= ;.

There is a rih shema alulus for ombining shemas and making spei�a-

tions look aeptably onise. For example, a shema may have other shemas in

its delaration part. The onvention is that if S has shema T in its delaration

part then we may expand S by merging the delarations of T with those expli-

itly present in S and anding the prediate part of T with the expliit prediate

part of S.

Hene the following de�nitions:

SM

0

dir

0

: B ! U

free

0

: IP(B)

free

0

= B � dom(dir

0

)

and

�SM

SM

SM

0

i.e.

14 Conise Enylopedia of Software Engineering

�SM

dir; dir

0

: B ! U

free; free

0

: IP(B)

free = B � dom(dir) ^

free

0

= B � dom(dir

0

)

permit the following, more onise, spei�ation of REQUEST :

REQUEST

�SM

b! : B

u? : U

free 6= ; ^

b! 2 free ^

free

0

= free� fb!g ^

dir

0

= dir � fb!! u?g

Readers interested in pursuing the spei�ation languages VDM and Z fur-

ther will �nd very readable aounts in referenes [4℄, [5℄ and [7℄.

Referenes

1. E.W. Dijkstra, C.S. Sholten, Prediate Calulus and Program Semantis, Springer-

Verlag, 1990.

2. R. Dowsing, V. Rayward-Smith, C.D. Walter, A First Course in Formal Logi

and its Appliations in Computer Siene, Blakwell Sienti�, 1986, ISBN 0-632-

01308-7.

3. D. Gries, The Siene of Programming, Springer-Verlag, 1981, ISBN 0-387-90641-

X.

4. D. C. Ine, An Introdution to Disrete Mathematis and Formal System Spei�-

ation, Oxford University Press, 1988, ISBN 0-19-859664-2.

5. C.B. Jones, Systemati Software Development using VDM, (2nd Edition) Pren-

tie/Hall International, 1990, ISBN 0-13-880733-7.

6. A. Kaldewaij, Programming, Prentie/Hall International, 1990, ISBN 0-13-204108-

1.

7. M. Spivey, The Z Notation { A Referene Manual, Prentie Hall, 1989.

