
Modular Arithmetic

Scott Contini

Çetin K. Koç,

Istanbul Şehir University &

University of California Santa Barbara

Colin D. Walter,

Information Security Group,

Royal Holloway, University of London.

Synonyms

– Residue arithmetic

Related Concepts and Keywords

– Arithmetic
– Modulus
– Residue
– Remainder
– Modular multiplication
– Montgomery modular multiplication
– Modular exponentiation
– Prime fields
– Finite fields
– Rings

Definition

Modular arithmetic is almost the same as the usual arithmetic of whole
numbers. The main difference is that operations involve remainders after division
by a specified number (the modulus) rather than the integers themselves.

Background

Modular arithmetic is a key ingredient of many public key cryptosystems.
It provides finite structures (called “rings”) which have all the usual arithmetic
operations of the integers and which can be implemented without difficulty
using existing computer hardware. An important property of these struc-
tures is that they appear to be randomly permuted by operations such as
exponentiation but the permutation is often easily reversed by another ex-
ponentiation. For suitably chosen cases, these operations enable encryption
and decryption or signature generation and verification. Direct applications
include RSA public-key encryption and the RSA digital signature scheme [17],
ElGamal public key encryption and the ElGamal digital signature scheme [3],



the Fiat-Shamir signature scheme [4], the Schnorr Identification Protocol [18],
and Diffie-Hellman key agreement [2].

Modular arithmetic is also used to construct finite fields and in tests during
prime generation [7] (see also probabilistic primality test). Several copies of the
modular structures form higher dimensional objects in which lines, planes and
curves can be constructed. These can be used to perform elliptic curve cryptography
(ECC) [12,6] and to construct threshold schemes [19]. Additionally, modular
arithmetic is used in some hash functions and symmetric key primitives. In
many such cases, the modulus is implied by the computer word size, but other
times the modulus is explicitly stated.

Theory

Introduction

There are many examples of modular arithmetic in everyday life. It is applicable
to almost any measurement of a repeated, circular or cyclic process. Clock time
is a typical example: seconds range from 0 to 59 and just keep repeating, hours
run from 0 to 11 (or 23) and also keep repeating, days run from Sunday (0, say)
to Saturday (6, say). These are examples of arithmetic modulo 60, 12 (or 24)
and 7 respectively. Measuring angles in degrees uses arithmetic modulo 360.

To understand arithmetic in modulus N , imagine a line of length N units,
where the whole number points 0, . . . , N − 1 are labelled. Now connect the two
end points of the line so that it forms a circle of circumference N . Performing
modular arithmetic with respect to modulus N is equivalent to arithmetic with
the marked units on this circle.

6
5

4

3

2

8

9

10

7

1
0

11

Fig. 1. Geometric view of arithmetic modulo 12.



An example for N = 12 is shown in Figure 1. If one starts at number 0 and
moves 14 units forward, the number 2 is reached. This is written 14 = 2 (mod 12).
Similarly, one can walk backwards 15 units from 0 and end up at 9. Hence,
−15 = 9 (mod 12). In this arithmetic every 12 is discarded. Equivalently, for
any two numbers A and B such that A = B (mod 12), 12 divides the difference
A−B.

Modular addition is the same as addition of units on this circle. For example, if
N = 12 and the numbers 10 and 4 are added on this circle, the result is 2. This is
because if one starts at position 10 and moves ahead 4 units, position 2 is reached.
So four hours after 10 o’clock is 2 o’clock. This is written 10 + 4 = 2 (mod 12).
The result is the remainder (or “residue”) after division by 12, i.e., 10 + 4 = 14
becomes 14−12, namely 2.

The notation for modular arithmetic is almost identical to that for ordinary
(integer) arithmetic. The main difference is that most expressions and equations
specify the modulus. Thus,

14 = 2 (mod 12)

states that 14 and 2 represent the same element in a set which is called the ring

of residues mod 12. When the modulus is clear, it may be omitted, as in

14 ≡ 2

The different symbol ≡ is needed because 14 and 2 are not equal as integers. The
equation (or “congruence”) is read as “14 is congruent to 2”. All the integers in
the set {...,−22,−10, 2, 14, 26, ...} represent the same residue class (or congru-

ence class) modulo 12 because they all give the same remainder on division by
12, i.e., the difference between any two of them is a multiple of 12. In general,
the numbers A, A+N , A+2N , A+3N , . . . and A−N , A−2N , A−3N , . . . are
all equivalent modulo N . Normally one works with the least non-negative repre-
sentative of a class, 2 in this case, because of the convenience of the unique choice
when equality is tested, and because it takes up the least space. (Note that some
programming languages incorrectly implement the modular reduction of negative
numbers by failing to take proper account of the sign. The Microsoft Windows
calculator correctly reduces negatives, but gives the greatest non-positive value,
namely −10 in our example.)

Modular Arithmetic Operations

Addition, subtraction and multiplication are performed in exactly the same way
as for integer arithmetic. Strictly speaking, the arithmetic is performed on the
residue classes but, in practice, integers are picked from the respective classes
and they are worked with instead. Thus,

7× 11 + 3 = 80 = 8 (mod 12)

In the expression on the left, the least non-negative residues have been selected
for working with. The result, 80, then requires a modular reduction to obtain



a least non-negative residue. Any representatives could be selected to perform
the arithmetic. The answer would always differ by at most a multiple of the
modulus, and so it would always reduce to the same value.

Hardware usually performs such reductions as frequently as possible in or-
der to stop results from overflowing. Optimising integer arithmetic to perform
modular arithmetic is the subject of much research. Modular multiplication is
one of the most important areas of value to those implementing cryptographic
functions; another is modular exponentiation. Montgomery [13] and Barrett [1]
have created the most widely used methods for modular multiplication (see also
Montgomery modular arithmetic and Barrett reduction). Such operations make
data-dependent use of power. This makes their use in embedded cryptosystems
(e.g. smart cards) susceptible to attack through timing variations [8], compro-
mising emanations [15] and differential power analysis [9] (see also timing attack,
RF attack and smartcard tamper resistance). Secure implementation of modular
arithmetic is therefore at least as important as efficiency in such systems.

Addition, subtraction and multiplication behave in the same way for residues
as for integer arithmetic. The usual identity, commutative and distributive laws
hold, so that the set of residue classes form a “ring” in the mathematical sense,
denoted ZN for modulus N . Thus,

• N ≡ 0 (mod N).
• A+ 0 ≡ A (mod N).
• 1×A ≡ A (mod N).
• if A ≡ B (mod N), then B ≡ A (mod N).
• if A ≡ B (mod N) and B ≡ C (mod N), then A ≡ C (mod N).
• if A ≡ B (mod N) and C ≡ d (mod N), then A+ C ≡ B + d (mod N).
• if A ≡ B (mod N) and C ≡ d (mod N), then A× C ≡ B × d (mod N).
• A+B ≡ B +A (mod N).
• A×B ≡ B ×A (mod N).
• A+ (B + C) ≡ (A+B) + C (mod N).
• A× (B × C) ≡ (A×B)× C (mod N).
• A× (B+C) ≡ (A×B) + (A×C) (mod N).

However, division is generally a problem unless the modulus is a prime. Since

10 = 2×5 = 2×11 (mod 12)

it is clear that division by 2 (mod 12) can produce more than one answer; it is
not uniquely defined. In fact, division by 2 (mod 12) is not possible in some cases:
2x (mod 12) always gives an even residue, so 3 (mod 12) cannot be divided by
2. It can be shown that division by A (mod N) is always well-defined precisely
when A and N share no common factor, i.e. when they are co-prime. Thus,
division by 7 is possible in modulo 12, but not division by 2 or 3.

If 1 is divided by 7 (mod 12), the result is the multiplicative inverse of 7.
Since 7×7 = 1 (mod 12), 7 is its own inverse. Following the usual notation
of real numbers, this inverse is written 7−1. For large numbers, the extended



Euclidean algorithm [5] is used to compute multiplicative inverses. More pre-
cisely, to find the inverse of A (mod N), one inputs the pair A,N into the
algorithm, and it outputs X,Y such that A×X + N×Y = gcd(A,N), where
gcd is the greatest common divisor. If the gcd is 1, then X is the inverse of
A (mod N). Otherwise, no such inverse exists.

Modular exponentiation (see exponentiation algorithms) is the main process
in many of the cryptographic applications of this arithmetic. The notation is
identical to that for integers and real numbers. CD (mod N) is D copies of C
all multiplied together and reduced modulo N . As mentioned, the multiplica-
tive inverse is denoted by an exponent −1. Then the usual power laws, such as
xA×xB = xA+B (mod N), hold in the expected way.

When a composite modulus is involved, say N , it is often easier to work
modulo its factors. Usually a set of co-prime factors of N is chosen such that
the product is N . Solutions to the problem for each of these factors can then be
pieced together into a solution modulo N using the Chinese Remainder Theorem
(CRT) [14]. Implementations of the RSA cryptosystem which store the private
key can use CRT to reduce the workload of decryption by a factor of 4.

An interesting aside is that the ring of integers modulo 0, i.e. Z0, is just the
usual set of whole numbers with its normal operations of addition and multipli-
cation: two whole numbers which belong to the same residue class must differ
by a multiple of 0, and so have to be equal.

Multiplicative Groups and Euler’s φ Function

The numbers which are relatively prime to (or just “prime to” for short) the
modulus N have multiplicative inverses, as noted above. So they form a group
under multiplication. Consequently, each number X which is prime to N has an
order mod N which is the smallest positive integer n such that Xn = 1 (mod N).
The Euler phi function φ gives the number of elements in this group, and it
is a multiple of the order of each element. So Xφ(N) = 1 (mod N) for X

prime to N , and, indeed, Xkφ(N)+1 = X (mod N) for such X and any k.
This last is essentially what is known as Euler’s Theorem. As an example,
{1, 5, 7, 11} is the set of residues prime to 12. So these form a multiplica-
tive group of order φ(12) = 4 and 14 = 54 = 74 = 114 = 1 (mod 12).
A special case of this result is Fermat’s “little” theorem which states that
XP−1 = 1 (mod P ) for a prime P and integer X which is not divisible by
P . These are really the main properties that are used in reducing the cost of
exponentiation in cryptosystems and in probabilistic primality testing (see also
Miller-Rabin probabilistic primality test) [11,16].

When N = PQ is the product of two distinct primes P and Q, φ(N) =
(P−1)(Q−1). RSA encryption on plaintext M is performed with a public ex-
ponent E to give ciphertext C defined by C = ME (mod N). Illustrating this
with N = 35, M = 17 and E = 5, the computation is C ≡ 175 ≡ (172)2×17 ≡
2892×17 ≡ 92×17 ≡ 81×17 ≡ 11×17 ≡ 187 ≡ 12 (mod 35). The private decryp-
tion exponent D must have the property that M = CD (mod N), i.e., MDE =
M (mod N). From the above, the value of D must satisfy DE = kφ(N)+1



for some k, i.e., D is a solution to DE ≡ 1 mod (P−1)(Q−1). A solution
is obtained using the Euclidean algorithm [5]. For the example, D = 5 since

φ(35) = 24 and DE ≡ 5×5 ≡ 1 (mod 24). So M ≡ 125 ≡ (122)2×12 ≡ 1442×12
≡ 42×12 ≡ 192 ≡ 17 (mod 35), as expected. RSA chooses moduli which are
products of two (large) primes so that decryption works also for texts which are
not prime to the modulus. A nice exercise for the reader is to prove that this is
really true. CRT is useful in the proof.

Prime Fields

When the modulus is a prime P , every residue except 0 is prime to the modulus.
Hence every non-zero number has a multiplicative inverse. So residues mod P

form a field with P elements, written FP or GF (P ). These prime fields are exam-
ples of finite fields [10]. The smallest such field is F2 which contains the two values
0 and 1. Because every non-zero has an inverse, the arithmetic of these fields is
similar in many ways to that of the real numbers and it is possible to perform sim-
ilar geometric constructions. They already form a very rich source for cryptog-
raphy, such as Diffie-Hellman key agreement [2] and elliptic curve cryptography
[12,6], and will undoubtedly form the basis for many more cryptographic primi-
tives in the future.

Recommended Reading

[1] P. Barrett, “Implementing the Rivest Shamir and Adleman Public Key
Encryption Algorithm on a Standard Digital Signal Processor”, Advances in
Cryptology – Crypto ’86, A. M. Odlyzko (ed), Lecture Notes in Computer
Science 263, pp. 311–323, Springer Verlag, 1987.
http://www.springerlink.com/content/c4f3rqbt5dxxyad4/

[2] W. Diffie and M. E. Hellman, “New Directions in Cryptography”, IEEE

Transactions on Information Theory 22(6), pp. 644–654, November 1976.
http://citeseer.ist.psu.edu/diffie76new.html

[3] T. ElGamal, “A Public-Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms”, IEEE Transactions on Information Theory 31(4),
pp. 469–472, July 1985.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1057074

[4] A. Fiat and A. Shamir, “How To Prove Yourself: Practical Solutions to
Identification and Signature Problems”, Advances in Cryptology – Crypto

’86, A. M. Odlyzko (ed), Lecture Notes in Computer Science 263, pp.
186–194, Springer Verlag, 1987.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8796

[5] D. E. Knuth, The Art of Computer Programming, Volume 2, Semi-

numerical Algorithms, Addison-Wesley, Third edition, 1998. ISBN 0-201-
89684-2.
http://www.informit.com/title/0201896842

[6] N. Koblitz, “Elliptic Curve Cryptosystems”, Mathematics of Computation

48(177), pp. 203–209, January 1987.
http://www.jstor.org/pss/2007884

http://www.springerlink.com/content/c4f3rqbt5dxxyad4/
http://citeseer.ist.psu.edu/diffie76new.html
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1057074
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8796
http://www.informit.com/title/0201896842
http://www.jstor.org/pss/2007884


[7] N. Koblitz, A Course in Number Theory and Cryptography, Graduate Texts
in Mathematics 114, Springer Verlag, Second edition, 1994. ISBN 978-0-
387-94293-3.
http://www.springer.com/math/numbers/book/978-0-387-94293-3

[8] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”, Advances in Cryptology – Crypto ’96,
N. Koblitz (ed), Lecture Notes in Computer Science 1109, pp. 104–113,
Springer-Verlag, 1996.
http://www.springerlink.com/content/4el17cvre3gxt4gd/

[9] P. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis”, Advances
in Cryptology – Crypto ’99, M. Wiener (ed), Lecture Notes in Computer
Science 1666, pp. 388–397, Springer-Verlag, 1999.
http://www.springerlink.com/content/kx35ub53vtrkh2nx/

[10] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their
Applications, Cambridge University Press, Second edition, 1994. ISBN
9780521460941.
http://www.cambridgeuniversitypress.com/catalogue/catalogue.asp?isbn=9780521460941

[11] G. L. Miller, “Riemann’s Hypothesis and Tests for Primality”, J. Computer and
System Sciences 13(3), pp. 300–317, 1976.
http://www.cs.cmu.edu/~glmiller/Publications/b2hd-Mi76.html

[12] V. Miller, “Uses of Elliptic Curves in Cryptography”, Advances in Cryptology
– Crypto ’85: Proceedings, H. C. Williams (ed), Lecture Notes in Computer
Science 218, pp. 417–426, Springer Verlag, 1986.
http://www.springerlink.com/content/4lfhkd08684v3wyl/

[13] P. L. Montgomery, “Modular Multiplication Without Trial Division”, Mathemat-
ics of Computation 44(170), pp. 519–521, April 1985.
http://www.jstor.org/pss/2007970

[14] J.-J. Quisquater and C. Couvreur, “Fast Decipherment Algorithm for RSA Public-
key Cryptosystem”, Electronics Letters 18(21), pp. 905–907, October 1982.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4246955

[15] J.-J. Quisquater and D. Samyde, “ElectroMagnetic Analysis (EMA): Measures
and Counter-measures for Smart Cards”, Smart Card Programming and Security
(e-Smart 2001), I. Attali & T. Jensen (eds), Lecture Notes in Computer Science
2140, pp. 200–210, Springer-Verlag, 2001.
http://www.springerlink.com/content/chmydkq8x5tgdrce/

[16] M. O. Rabin, “Probabilistic Algorithm for Testing Primality”, J. Number Theory
12(1), pp. 128–138, February 1980.
http://dx.doi.org/10.1016/0022-314X(80)90084-0

[17] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”, Communications of the ACM 21(2),
pp. 120–126, February 1978.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.5588

[18] C. P. Schnorr, “Efficient Signature Generation by Smart Cards”, Journal of
Cryptology 4, pp. 161–174, 1991.
http://www.springerlink.com/content/w037127811042441/

[19] D. R. Stinson, Cryptography: Theory and Practice, CRC Press, Third edition,
2005. ISBN 9781584885085.
http://www.crcpress.com/product/isbn/9781584885085

http://www.springer.com/math/numbers/book/978-0-387-94293-3
http://www.springerlink.com/content/4el17cvre3gxt4gd/
http://www.springerlink.com/content/kx35ub53vtrkh2nx/
http://www.cambridgeuniversitypress.com/catalogue/catalogue.asp?isbn=9780521460941
http://www.cs.cmu.edu/~glmiller/Publications/b2hd-Mi76.html
http://www.springerlink.com/content/4lfhkd08684v3wyl/
http://www.jstor.org/pss/2007970
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4246955
http://www.springerlink.com/content/chmydkq8x5tgdrce/
http://dx.doi.org/10.1016/0022-314X(80)90084-0
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.5588
http://www.springerlink.com/content/w037127811042441/
http://www.crcpress.com/product/isbn/9781584885085

